44वां अंक जनवरी - मार्च 2015

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई की समाचार पत्रिका 'पवन'

नीवे NIWE

ISO 9001 : 2008

http://niwe.res.in

अनक्रमणिका

+ सक्रिय रा. प.ऊ. संस्थान - 2

भारतीय ऊर्जा प्रणाली के
 परिप्रेक्ष्य में पवन ऊर्जा
 की प्रासंगिकता: -16

का त्रासामकताः

संपादकीय समिति

मुख्य संपादक

डॉ एस गोमतीनायगम महानिदेशक

सह-संपादक

पी. कृजगतेल अपर निदेशक और एकक प्रमुख, ITCS

सदस्य

राजेश कत्याल

उप महानिदेशक और एकक प्रमुख R&D

डॉ. जी गिरिधर

निदेशक और एकक प्रमुख SRRA

ए मोहम्मद हुसैन

निदेशक और एकक प्रमुख WTRS

डी. लक्ष्मणन

निदेशक, (प्रशासन और वित्त)

एम. अनवर अली

अपर निदेशक और एकक प्रमुख, ESD

एस ए मैश्यु

अपर निदेशक और एकक प्रमुख Testing

ए सेंथिल कुमार

अपर निदेशक और एकक मुख्य, S&C

के भूपति

अपर निदेशक और एकक प्रमुख, WRA

संपादकीय

भारत में उत्पादित 66 प्रतिशत नवीकरणीय ऊर्जा में, वर्तमानसमय में, पवन ऊर्जा मवसे अधिक सिद्ध, परिपक्व और समाज में स्वीकार्य प्रौद्योगिकी है; इस अवसर पर पाठकगणों को यह सूचित करते हुए मुझे हार्दिक प्रसन्नता हो रही है कि राष्ट्रीय पवन ऊर्जा संस्थान को 21-22 मार्च, 2015 की अवधि में स्पेन देशके व्यापार पहल समूह (बीआईडी) द्वारा, गुणवत्ता के लिए प्रतिबद्धता, नेतृत्व, प्रौद्योगिकी एवं नवाचार और

गुणवत्ता की सशक्त उत्कृष्टता एवं प्रतिबद्धता हेतु मान्यता देते हुए, स्वर्ण श्रेणी वर्ग के अंतर्गत, स्विट्जरलैंड में, जिनेवा गुणवत्ता कन्वेंशन 2015 में, 'शताब्दी अंतर्राष्ट्रीय गुणवत्ता - युग पुरस्कार' प्रदान किया गया है।

राष्ट्रीय पवन ऊर्जा संस्थान अपने चरित्र को परिवर्तित करने में भी गतिशील रहा है और मात्र एक सेवा आधारित केंद्र से अब प्रासंगिक अनुसंधान और विकास आधारित राष्ट्रीय संस्थान हो गया है। राष्ट्रीय पवन ऊर्जा संस्थान ने भारतीय पवन ऊर्जा उद्योग हेतु दो महत्वपूर्ण सेवाएं आरम्भ की हैं (i) अंतर्राष्ट्रीय मान्यता प्राप्त प्रमाणीकरण सेवा, भारतीय पवन ऊर्जा टरवाइन जेनरेटर्स हेतु (ii) पवन ऊर्जा पूर्वानुमान सेवा, भारतीय ग्रिड में उच्च कोटिकी पवन ऊर्जा में पैठ करते हुए समय-

निर्धारणसुविधा सहित केंद्रों में पवन ऊर्जा भेजने में सक्षमता हेतु।

लघु पवन ऊर्जा टरबाइन परीक्षण के साथ, 15 किलोवॉट ऊर्ध्वाधर अक्ष ग्रिड जो कि पवन ऊर्जा टरबाइन से जुड़ा है, इस प्रकार के नए परीक्षण का कार्य प्रगति पर है; और राष्ट्रीय पवन ऊर्जा संस्थान ने पिच विनियमित 225 किलोवॉट मशीन की विद्युत गुणवत्ता मापन का कार्य पूर्ण कर लिया है।

इसके अतिरिक्त, पवन और अन्य पैरामीटर्स के लिए वास्तविक समय दूरस्थ निगरानी हेतु फोटोनिक प्रणाली (LIDAR) के स्वदेशी डिजाइन और विकास के प्रोटोटाइप का परीक्षण कायथर में किया गया है। मैसर्स जीवीपी वैज्ञानिक और औद्योगिक अनुसंधान केन्द्र के सहयोग से "ऊर्ध्वाधर पवन प्रोफाइलिंग स्वचालित संसधान प्रणाली, अनुवाद और आंकड़ा अधिग्रहण" के वाणिज्यकरण का कार्य प्रगति पर है।

अप्रैल, 2010 में पवन ऊर्जा एटलस के शुभारंभ के अवसर पर, 103 गीगावॉट के 80 मीटर स्तर पर पवन संभावित मस्तूल विधिमान्य किए गए और अब 100 मीटर ऊंचाई के 73 से अधिक मस्तूल भारत के विभिन्न स्थानों पर संस्थापित किए गए हैं जिससे कि बहुस्तर पर वास्तविक समय आंकड़े अधिग्रहण की सुविधा और पवन संसाधन क्षमता को पवन ऊर्जा एटलस पूर्वानुमान हेतु मान्य किया जा सके।

विडला प्रौद्योगिकी और विज्ञान संस्थान पिलानी, गोवा परिसर, के साथ एक नए समझौता ज्ञापन पर हस्ताक्षर किए गए हैं; इसके अंतर्गत शैक्षणिक और अनुसंधान एवं सामाजिक-आर्थिक गतिविधियों का आदान-प्रदान किया जाएगा।

दो पवन ऊर्जा टरबाइनों के, एक मध्य प्रदेश में और एक तेनकाशी में, उपकरणीकरण करने और मापन का कार्य आईईसी मानकों के मापन प्रकार के परीक्षण के अनुरूप प्रगति पर है। मापन कार्य इस तीव्र गति पवन मौसम में जारी रहेगा जिससे कि तीव्र पवन गति सीमा के पूर्ण आँकड़े एकत्रित किए जाएं।

मानक और प्रमाणन नवीकरण करने का कार्य सीवेट / राष्ट्रीय पवन ऊर्जा संस्थान कर रहा है और सत्यापन के साथ प्रलेखन और क्षेत्र-निष्पादन के आदान-प्रदान का प्रमाणन किया जा रहा है। भारत में ग्रिड कनेक्शन और परीक्षण के लिए दो नए प्रोटोटाइप मॉडलों के लिए भी संस्तुति दी गई है।

भारतीय उद्योग के हित हेतु भारत में प्रमाणीकरण सेवाओं के संयुक्त लांच को अंतिम रूप देने के लिए राष्ट्रीय पवन ऊर्जा संस्थान का एक वैज्ञानिक दल मैसर्स टीयूवी रीनलैंड लिमिटेड के साथ, विचार-विमर्श, अंतिम निर्णय का कार्य प्रगति पर है। इस अविध में, राष्ट्रीय पवन ऊर्जा संस्थान भारत में लघु पवन ऊर्जा और उच्च वर्ण संकर के विकास हेतु अनुसंधान के लिए प्रस्ताव हेतु नोडल मंत्रालय को सहायता प्रदान करा रहा है और इस दिशा में दस परियोजनाओं को अंतिम रूप देने में राष्ट्रीय पवन ऊर्जा संस्थान का वैज्ञानिक दल सूक्षमता से जांच कार्य कर रहा है।

विदेश मंत्रालय / ITEC/SCAAP कार्यक्रम के अंतर्गत एक माह की अवधि में 15वाँ अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम सफलतापूर्वक पूर्ण किया। प्रशिक्षण कार्यक्रम के अंतर्गत कायथर में WTTS/WTRS और पवन ऊर्जा टरवाइन क्षेत्रों का भ्रमण किया और पुद्दुचेरी स्थित मैसर्स मिनवायु ऑरोविल और मैसर्स ग्लोबल विंड पावर लिमिटेड कारखानों का भ्रमण किया। इस अवसर पर पवन ऊर्जा टरवाइन क्षेत्रों के भ्रमण के साथ व्यावहारिक प्रशिक्षण और निर्माण कार्य प्रदर्शित किया। अंतर्राष्ट्रीय कार्यक्रम के अतिरिक्त 17वें राष्ट्रीय प्रशिक्षण पाठ्यक्रम में देश के 13 राज्यों से 43 प्रतिभागियों ने भाग लिया।

15-17 फ़रवरी 2015 की अविध में नई दिल्ली में राष्ट्रीय पवन ऊर्जा संस्थान ने नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) की सहायता से इरेडा द्वारा आयोजित रीइनवेसट 2015 (RE-INVEST 2015) में सिक्रय रूप से भाग लिया। राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों ने सिक्रय रूप से रीइनवेसट 2015 एक्सपो, अपतटीय पवन ऊर्जा सत्र और विद्युत सम्मेलन की कार्यवाही में भाग लिया रीइनवेसट 2015 में विद्युत, कोयला और नवीन एवं नवीकरणीय ऊर्जा मंत्रालय के माननीय मंत्री (स्वतंत्र प्रभार) श्री पीयूष गोयल जी द्वारा राष्ट्रीय पवन ऊर्जा संस्थान के प्रदर्शनी कक्ष का उद्घाटन किया गया।

राष्ट्रीय पवन ऊर्जा संस्थान सदैव ही छात्र—छात्राओं के लिए आकर्षण का केंद्र रहा है, विभिन्न विद्यालयों / पॉलिटेकनीक और अभियांत्रिकी विश्वविद्यालयों से आगंतुकों के लिए यह संस्थान केवल पवन ऊर्जा प्रौद्योगिकी का ही नहीं अपितु करता है।

सौर ऊर्जा संसाधन निर्धारण (SRRA) कार्यक्रम के अंतर्गत मैसर्स सन्ट्रेस, जर्मनी के प्रबंध निदेशक, डॉ रिचर्ड मेयर ने मैसर्स सन्ट्रेस कम्पनी के श्री कोशल छतबार के साथ सौर ऊर्जा संसाधन निर्धारण के आँकड़ों की गुणवत्ता नियंत्रण एल्गोरिथ्म के उन्नयन के लिए इस अवधि में राष्ट्रीय पवन ऊर्जा संस्थान का भ्रमण किया।

राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों ने सक्रिय रूप से जीआईज़ेड द्वारा समन्वित और केएफडब्ल्यू की सहायता से हरित ऊर्जा परिसर के विकास परियोजना में सक्रिय रूप से भाग लिया।

इस अविध में, राष्ट्रीय पवन ऊर्जा संस्थान ने नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) की संयुक्त सचिव (पवन ऊर्जा), श्रीमती वर्षा जोशी, भा.प्र.से., और TEDA के प्रबंध निदेशक, एवं TANGEDCO के अध्यक्ष तथा तिमलनाडु राज्य के ऊर्जा सचिव के साथ एक उच्च स्तरीय बैठक में SLDC, TANGEDCO के प्रचालन और पवन मौसम 2015 की अविध में अधिक से अधिक पवन ऊर्जा उत्पादन के संबंध में विस्तृत विचार-विमर्श,समीक्षा और अध्ययन किया।

राष्ट्रीय पवन ऊर्जा संस्थान ने आइयानरूथू उपस्टेशन में ABT मीटरिंग की एक सूक्षम प्रायोगिक संयंत्र परियोजना आरंभ की है और IWPA (पवन ऊर्जा उत्पादककर्ता) उद्योग प्रायोजित इस कार्यक्रम में तमिलनाडु राज्य में फैले हुए, ग्रिडों के साथ जुड़े हुए, सभी 134 उपस्टेशनों को भी यह सुविधा उपलब्ध करवाई जाएगी। परियोजना के विभिन्न विषयों पर विस्तृत विचार विमर्श का कार्य प्रगति पर है। इस पद्धति से राज्य में अधिकांशतः ग्रिड से उत्पादित होने वाली पवन ऊर्जा का समय निर्धारण एक वैज्ञानिक पूर्वानुमान पद्धति से, सक्षम रूप से, करने में सुविधा होगी।

राष्ट्रीय पवन ऊर्जा संस्थान ने अपना 'स्थापना दिवस' मनाया, जिसमें सीवेट / रा.प.ऊ. संस्थान के पूर्व कार्यपालक निदेशक श्री केपी सुकुमारन मुख्य अतिथि थे। राष्ट्रीय पवन ऊर्जा संस्थान देश के ऊर्जा उद्योग की अति आवश्यक आवश्यकताओं को पूर्ण करने हेतु पूर्णतः तैयार है जिससे कि वे उच्च वर्ण संकर ऊर्जा प्राप्त कर सकें क्यों कि अधिकतर क्षेत्रों में पवन ऊर्जा और सौर ऊर्जा प्रायः एक दूसरे के पूरक होते हैं।

आपकी बहुमूल्य समीक्षात्मक और सर्जनात्मक टिप्पणियाँ, विचार-विमर्श करते हुए, ऊर्जा उद्योग को और भी अधिक उपयोगी, सक्षम, सशक्त बनाने में राष्ट्रीय पवन ऊर्जा संस्थान को सहायता प्रदान करेगी जिसका हम सदैव स्वागत करते हैं।

डॉ एस गोमतीनायगम, महानिदेशक

अनुसंधान और विकास

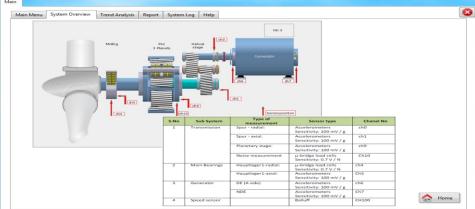
लघु पवन ऊर्जा टरबाइन परीक्षण / सूचीबद्ध करना

राष्ट्रीय पवन ऊर्जा संस्थान ने ग्रिड से जुड़े 15 किलोवॉट वर्टीकल एक्सिस के, इस प्रकार के प्रथम बार, लघु पवन ऊर्जा टरबाइन के दस्तावेज की समीक्षा का कार्य पूर्ण किया है। इस मॉडल का परीक्षण अप्रैल - अक्टूबर 2015 के तीव्र गति पवन मौसम में किया जाना सुनिश्चित किया गया है। इसके अतिरिक्त, WTRS कायथर में 2.3 किलोवॉट से 3.6 किलोवॉट के लघु पवन टरबाइनों के तीन मॉडलों के परीक्षण का कार्य पूर्ण किया गया। इम्पैनलमेंट (सूचीबद्ध करना) समिति की ग्याहरवीं बैठक का आयोजन किया गया और सूचीबद्ध की गई बारहवीं संशोधित सूची जारी किए जाने का कार्य प्रगति पर है।

15 किलोवॉट ग्रिड से जुड़े वर्टीकल एक्सिस लघु पवन ऊर्जा टरबाइन विशेष का एक दृश्य।

विद्युत गुणवत्ता मापन हेतु पिच विनियमित 225 किलोवॉट का पवन टरबाइन

राष्ट्रीय पवन ऊर्जा संस्थान ने पीआरडीसी के सहयोग से विद्युत गुणवत्ता मापन का, पिच विनियमित करने का 225 किलोवॉट पवन ऊर्जा टरबाइन का, आईईसी 61400-21 मानकों के अनुरूप, वोल्टेज में उतार-चढ़ाव / झिलमिलाहट और हार्मोनिक्स दोनों के लिए निरंतर और स्विचिंग प्रचालन हेतु परियोजना कार्य पूर्ण किया है और इसकी रिपोर्ट ग्राहक को प्रस्तुत कर दी गई है।



विद्युत गुणवत्ता मापन

WTRS, कायथर में पवन ऊर्जा टरबाइन हेतु स्वास्थ्य / दशा निगरानी - प्रयोगात्मक अनुसंधान एवं विकास

राष्ट्रीय पवन ऊर्जा संस्थान ने आईआईटी मद्रास और मैसर्स डीडीआई परामर्शदाता की तकनीकी सहायता से 'दोष पूर्वानुमान एल्गोरिथ्म सॉफ्टवेयर' विकसित करने की प्रक्रिया आरंम्भ की है। इस सॉफ्टवेयर को आंतरिक उपयोग तथा उपयोगकर्ताओं की टिप्पणियों और अधिक सुधार हेतु राष्ट्रीय पवन ऊर्जा संस्थान में संस्थापित किया गया है।

'दोष पूर्वानुमान एल्गोरिथ्म सॉफ्टवेयर'।

पवन ऊर्जा संसाधन निर्धारण

जनवरी से मार्च 2015 की अवधि में, 5 पवन ऊर्जा निगरानी स्टेशन (WMS) (राजस्थान में एक एवं छत्तीसगढ़ में 4) संस्थापित किए गए और कार्य पूर्ण होने के पश्चात 6 पवन ऊर्जा निगरानी स्टेशन बंद किए गए, (एक तिमलनाडु में और 3 महाराष्ट्र में एवं एक-एक उत्तराखंड तथा उड़ीसा राज्य में)। वर्तमान में 15 राज्यों और 1 केंद्र शासित प्रदेश में, 115 पवन ऊर्जा निगरानी स्टेशनों पर प्रचालन कार्य किया जा रहा है। ये पवन ऊर्जा निगरानी स्टेशन नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) और विभिन्न उद्यमियों द्वारा वित्त-पोषित हैं।

इस अवधि में निम्नलिखित परामर्श परियोजनाएं पूर्ण की गईं और इनकी रिपोर्ट प्रस्तुत की गई।

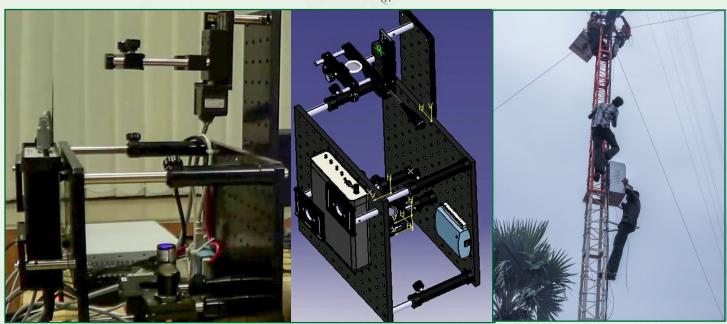
- 3 परियोजनाओं के लिए क्षेत्र मान्यकरण और जनरेशन ऑकलन।
- 27 क्षेत्रों के लिए पवन ऊर्जा निगरानी प्रक्रिया का सत्यापन।
- 3 क्षेत्रों के लिए पवन ऊर्जा घनत्व मानचित्र।
- 178.1 प्रस्तावित मेगावॉट पवन ऊर्जा क्षेत्रों के लिए तकनीकी यथोचित परिश्रम।
- एक क्षेत्र के लिए पूर्व व्यवहार्यता अध्ययन।
- एक क्षेत्र के लिए पवन ऊर्जा निगरानी अध्ययन पर रिपोर्ट।

पवन ऊर्जा संसाधन निर्धारण (WRA) एकक में अनुसंधान एवं विकास परियोजनाएं

पवन उर्जा और अन्य वायु पैरामीटर्स के वास्तविक समय की सुदूर निगरानी हेतु अभिकल्प और फोटोनिक प्रणाली का विकास

मैसर्स GVP-SIRC विशाखापट्टनम ने फोटोनिक्स प्रणाली के अभिकल्प और विकास के द्वारा वास्तविक समय की सुदूर निगरानी और अन्य मौसम संबंधी मापदंडों के संबंध में अपनी रिपोर्ट "ऊर्ध्वाधर पवन प्रोफाइलिंग स्वचालित संसधान प्रणाली, अनुवाद और आंकड़ा अधिग्रहण" (SAMIRA) प्रस्तुत कर दी है। परियोजना निगरानी समिति के द्वारा समीक्षा करने हेतु 25 मार्च 2015 को बैठक आयोजित की गई।

तमिलनाडु राज्य में वर्तमान पवन ऊर्जा टरबाइन क्षेत्रों का पुनरुद्धार


कन्याकुमारी और तिरुनेलवेली जिले में आवश्यक पवन ऊर्जा टरबाइन संबंधित जानकारी के संग्रह का कार्य आरंभ किया गया और सूचना-संग्रह का कार्य प्रगति पर है।

पवन ऊर्जा पूर्वानुमान

- कंदमनुर क्षेत्र में एक माह के आंकड़ों की त्रुटि विश्लेषण का कार्य किया गया।
- मैसर्स वोर्टेक्स कम्पनी के पूर्वानुमान आंकड़ों की त्रुटि विश्लेषण का कार्य किया गया।
- गुजरात ऊर्जा विकास एजेंसी के साथ NDA का प्रारूप तैयार किया गया जिसके अंतर्गत गुजरात में पवन ऊर्जा पूर्वानुमान संबंधी सेवाएं प्रदान करने का कार्य प्रगति पर है।

भारत में 7 राज्यों में 100 मीटर स्तर तक के WPP का ऑकलन और मान्यकरण

राष्ट्रीय पवन ऊर्जा संस्थान द्वारा 'पवन ऊर्जा विद्युत संभावना, ऑकलन और मान्यकरण परियोजना' के अंतर्गत, भारत के 7 राज्यों में 100 मीटर स्तह पर, 74 पवन ऊर्जा निगरानी स्टेशन संस्थापित किए गए हैं। (आंध्र प्रदेश में 10, गुजरात में 12, राजस्थान में 12, कर्नाटक में 13, महाराष्ट्र में 8, मध्य प्रदेश में 7 और तमिलनाडु में 12)। आकड़ों के अधिग्रहण का कार्य प्रगति पर है।

समीरा प्रोटोतॉइप

'पवन' - 44वां अं<mark>क जनवरी – मार्च 2015</mark>

48 क्षेत्रों से एक वर्ष के निरंतर आकड़ों के अधिग्रहण का कार्य (आंध्र प्रदेश में 7, गुजरात में 7, मध्य प्रदेश में 2, महाराष्ट्र में 4, कर्नाटक में 10, राजस्थान में 8 और तमिलनाडु में 10) सफलतापूर्वक पूर्ण किया गया।

- भारत के 7 राज्यों में 73 स्टेशनों की सतत निगरनी की जा रही है और वास्तविक समय पवन ऊर्जा के आँकड़े प्राप्त किए जा रहे हैं।
- मासिक आँकड़ों का विश्लेषण, सत्यापन और अंतरिम रिपोर्ट तैयार करने का कार्य प्रगति पर है।

पवन ऊर्जा संसाधन निर्धारण अध्ययन

- मैसर्स NEEPCO के लिए रिपोर्ट का मसौदा अग्रेषित किया गया।
- केरल राज्य के 3 क्षेत्रों में मैसर्स ANERT के लिए रिपोर्ट का मसौदा तैयार किया गया।
- गंगावरम पोर्ट ट्रस्ट के लिए अंतरिम रिपोर्ट अग्रेषित की गई।
- मैसर्स NPTC हेतु कुदगी क्षेत्र हेतु अंतरिम रिपोर्ट अग्रेषित की गई।
- केरल राज्य के 3 क्षेत्रों में मैसर्स ANERT के लिए अंतरिम रिपोर्ट का मसौदा अग्रेषित किया गया।
- एन्नोर बंदरगाह के लिए अंतरिम रिपोर्ट अग्रेषित की गई।
- एन्नोर बंदरगाह पर सुधार कार्य किया गया।
- मैसर्स NSL के लिए अंतिम रिपोर्ट तैयार की गई।

समझौता ज्ञापन

19 फ़रवरी 2015 को राष्ट्रीय पवन ऊर्जा संस्थान और बिडला प्रौद्योगिकी संस्थान (NIWE and BITS) के मध्य एक समझौता ज्ञापन पर हस्ताक्षर किए गए जिसके अंतर्गत शैक्षणिक/ अनुसंधान / प्रशिक्षण / सामाजिक, आर्थिक और विचार-विमर्श करने संबंधी गतिविधियाँ आरंभ की जाएंगी।

अन्य कार्यक्रम

- दिनांक 13 जनवरी 2015 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई (NIWE) में असम राज्य में मैसर्स ऑयल इंडिया लिमिटेड के लिए पवन ऊर्जा निगरानी स्टेशन (WMS) की स्थापना हेतु आंकॅड़े संग्रह करने वाला, दबाव सेंसर और सौर ऊर्जा विकिरण सेंसर के क्रय के लिए मूल्यांकन करने हेतु तकनीकी समिति की बैठक आयोजित की गई।
- दिनांक 13 और 14 जनवरी 2015 की अविध में श्री जे बॉस्टीन, सहायक निदेशक (तकनीकी) ने कर्नाटक राज्य में तकनीकी बोली मूल्यांकन के लिए 8 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र के विकास हेतु मैसर्स भारत एलेक्ट्रोनिक्स लिमिटेड, बंगलौर का भ्रमण किया।
- दिनांक 10 फ़रवरी 2015 को श्री जॉएल फ्रेंकलिन असॉरिया, अपर निदेशक एवं श्री कृष्णन, सहायक अभियंता ने मैसर्स चेन्नई पोर्ट ट्रस्ट, चेन्नई के लिए पूर्व बोली बैठक में भाग लिया।
- दिनांक 16 फ़रवरी 2015 को रा.प.ऊ.संस्थान चेन्नई में मैसर्स टीएनपीएल लिमिटेड के लिए "पुनरुद्धार और तकनीकी आर्थिक व्यवहार्यता अध्ययन" हेतु अध्ययन परियोजना रिपोर्ट को अंतिम रूप देने के लिए बैठक आयोजित की गई।

- दिनांक 19 फ़रवरी 2015 को रा.प.ऊ.संस्थान में तृतीय तकनीकी समिति की बैठक आयोजित की गई जिसमें भारत में पवन ऊर्जा संभावना के पुन: निर्धारण हेतु मूल पवन ऊर्जा पैरामीटर के मानचित्र के क्रय हेतु प्राप्त निविदाओं का मूल्यांकन किया गया।
- दिनांक 24 और 25 फ़रवरी 2015 की अवधि में रा.प.ऊ.संस्थान की पवन ऊर्जा संसाधन निर्धारण एकक के प्रमुख श्री के भूपित ने मिजोरम राज्य में SWES स्थापित करने के लिए उपयुक्त क्षेत्रों की पहचान करने के लिए मिजोरम का भ्रमण किया।
- दिनांक 2 से 10 मार्च 2015 की अविध में रा.प.ऊ.संस्थान की पवन ऊर्जा संसाधन निर्धारण एकक के प्रमुख श्री के भूपित, अपर निदेशक श्री एम जॉएल फ्रेंकिलन असॉरिया, एवं सहायक अभियंता श्री बी कृष्णन ने प्रस्तावित व्यवहार्यता और लॉजिस्टिक अध्ययन हेतु (200 से 250 किलोवॉट) पवन ऊर्जा टरबाइन क्षेत्रों के लिए अंडमान एवं निकोबार प्रशासन का भ्रमण किया।
- दिनांक 24 फरवरी से 8 मार्च 2015 की अवधि में रा.प.ऊ.संस्थान के सहायक निदेशक (तकनीकी) श्री ए जी रंगराज, और किनष्ट अभियंता श्री आर विनोद कुमार ने अरुणाचल प्रदेश में पवन ऊर्जा निगरानी स्टेशन स्थापित करने और उपयुक्त क्षेत्रों की पहचान करने के लिए अरुणाचल प्रदेश का भ्रमण किया।
- दिनांक 18 मार्च 2015 को भारत में पवन ऊर्जा संभावना के पुनः मूल्यांकन हेतु मूल पवन ऊर्जा पैरामीटर मानचित्र क्रय हेतु उपयुक्त विक्रेता का चयन करने के लिए चतुर्थ तकनीकी समिति की बैठक आयोजित की गई।
- दिनांक 25 मार्च 2015 को "ऊर्ध्वाधर पवन ऊर्जा प्रोफाइलिंग प्रणाली स्वचालित संधान, अनुवाद और आँकड़ा अधिग्रहण" SAMIRA हेतु मैसर्स जीवीपी वैज्ञानिक और औद्योगिक अनुसंधान केन्द्र द्वारा प्रस्तुत रिपोर्ट की समीक्षा हेतु रा.प.ऊ.संस्थान में द्वितीय परियोजना निगरानी समिति की बैठक आयोजित की गई।

राज्य नोडल एजेंसियों / हितधारकों / पवन ऊर्जा टरबाइन निर्माताओं के साथ बैठक

11 फ़रवरी 2015 को रा.प.ऊ.संस्थान के कॉन्फ्रेंस हॉल में हितधारकों की बैठक आयोजित की गई जिसमें राज्य नोडल एजेंसियों (SNAs), पवन ऊर्जा टरबाइन निर्माताओं, विकासकर्ताओं, IWPMA, IWPA, एमएनआरई के अधिकारी उपस्थित थे, इस बैठक में NCEF योजना के अंतर्गत 100 मीटर स्तर की ऊँचाई के 500 पवन ऊर्जा निगरानी स्टेशनों में आ रही बाधाओं को समझने और क्रियान्वयन के लिए की जानेवाली अग्रिम कार्रवाई का निर्धारण हेतु विचार विमर्श किया गया। इससे हितधारकों और राज्य नोडल एजेंसियों (SNAs) को योजना का वास्तविक रूप समझने और इसे अधिक प्रभावी तरह से लागू करने में सुविधा होगी।

उपर्युक्त बैठक में पवन ऊर्जा टरबाइन निर्माता / विकासकर्ता / एसोसिएशन के 18 प्रतिभागी, राज्य नोडल एजेंसी के आठ प्रतिभागी, एमएनआरई के एक प्रतिनिधि और रा.प.ऊ.संस्थान के ग्यारह अधिकारियों ने भाग लिया।

डॉ एस गोमतीनायगम, महानिदेशक ने, उपर्यक्त बैठक में, रा.प.ऊ.संस्थान में सभी प्रतिभागियों का स्वागत किया और इस योजना के लाभ से सभी को अवगत करवाया। उन्होंने एमएनआरई के दिशा-निर्देशों.और क्रियान्वयन में रा.प.ऊ.संस्थान के सन्मुख आने वाली समस्याओं, की भी व्याख्या की। रा.प.ऊ.संस्थान के महानिदेशक ने सूचित किया कि नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) पर्ण देश में पवन ऊर्जा संसाधन निर्धारण (WRA) की परियोजना में गति लाना चाहता है और देश भर के विश्वसनीय पवन ऊर्जा आँकड़े एकत्रित करने के लिए पीपीपी मोड के उद्देश्य के बारे में सूचना दी। उन्होंने यह भी बताया कि इस योजना का मुख्य उद्देश्य देश भर में 500 स्थानों में 100 मीटर के स्तर पर पवन ऊर्जा क्षमता का अध्ययन करना है; प्रारंभ में, इस योजना की लागत में साझा अनुपात 40 प्रतिशत भाग राष्ट्रीय स्वच्छ ऊर्जा कोष से. 30 प्रतिशत SNAs से और 30 प्रतिशत भाग निजी उद्योग जगत से था लेकिन राज्य नोडल एजेंसियों (SNAs) के समक्ष वित्तीय बाधाओं के कारण सरकार ने संबंधित राज्य नोडल एजेंसियों (SNAs) / निजी विकासकर्ता / उद्योग जगत को इसमें कुछ छुट का प्रावधान करते हुए 60 प्रतिशत की हिस्सेदारी करने का निर्णय लिया है।

रा.प.ऊ.संस्थान के पवन ऊर्जा संसाधन निर्धारण एकक के प्रमुख श्री के भूपति ने इस योजना की विस्तृत जानकारी प्रस्तुत की।

नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) के प्रधान वैज्ञानिक अधिकारी श्री ए हरि भास्करन ने कहा की योजना को क्रियान्वयनित करने से पूर्व पवन ऊर्जा टरबाइन निर्माताओं, विकासकर्ताओं, राज्य नोडल एजेंसियों (SNAs) और हितधारकों के साथ विचार-विमर्श किया गया था और इसके महत्व को समझाया गया था, उन्होंने हितधारकों को सूचित किया था कि पवन ऊर्जा निगरानी स्टेशनों की स्थापना की प्रक्रिया में प्राइवेट उद्योग को अधिक संख्या में शामिल करते हुए इस कार्य को तीव्र गित से पूर्ण करने का निर्णय लिया गया है, जिससे सरकार 100 मीटर के स्तर पर पवन ऊर्जा क्षमता की संभावना के सही आंकड़े प्राप्त कर सके। उन्होंने कहा कि सभी प्रतिभागियों से अनुरोध किया कि वे एमएनआरई के दिशा-निर्देशों में उपयुक्त संशोधन करने हेत अपने सुझाव प्रस्तुत कर सकते हैं।

इस बैठक में कई निजी संस्थाओं, हितधारकों और राज्य नोडल एजेंसियों (SNAs) ने नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) के दिशानिर्देशों से संबंधित विषयों पर विभिन्न प्रश्न पूछे, रा.प.ऊ.संस्थान के महानिदेशक और पवन ऊर्जा संसाधन निर्धारण एकक के प्रमुख ने बैठक में उठाए गए सभी प्रश्नों को स्पष्ट किया।

पवन ऊर्जा टरबाइन परीक्षण

दो परियोजनाओं का कार्य प्रगति पर है:

- मध्य प्रदेश राज्य के रतलाम जिले के रिचादेवड़ा स्थान में मैसर्स एक्स्नॉन टेक्नोलॉजीज लिमिटेड कम्पनी के XYRON 1000 किलोवॉट के पवन ऊर्जा टरबाइन-प्रकार परीक्षण के मापन का कार्य तीव्र गति मौसम 2015 में आरम्भ किए जाने की संभावना है।
- तमिलनाडु राज्य के तिरुनेलवेली जिले, तेनकासी (तालुका), के कंपानेरी पुदुकुडी ग्राम में मैसर्स गरुड़ वायु शक्ति लिमिटेड कम्पनी के GVSL1700 किलोवॉट के पवन ऊर्जा टरबाइन-प्रकार परीक्षण के मापन का कार्य तीव्र गित मौसम 2015 में आरम्भ किए जाने की संभावना है।

मानक और प्रमाणन

पवन ऊर्जा टरबाइन मॉडल GWL 225 के प्रमाण पत्र नवीकरण के संबंध में दस्तावेज की समीक्षा / सत्यापन का कार्य पूर्ण हो चुका है। समीक्षा / सत्यापन के आधार पर नवीन प्रमाणपत्र मैसर्स सदर्न विंड फार्म्स लिमिटेड कम्पनी को ज़ारी किया गया है।।

मैसर्स सदर्न विंड फार्म्स लिमिटेड कम्पनी को नवीन प्रमाणपत्र ज़ारी करते हुए।

- राष्ट्रीय पवन ऊर्जा संस्थान और मैसर्स आरआरबी एनर्जी लिमिटेड के मध्य एक समझौते पर हस्ताक्षर किए गए हैं जिसमें टीएपीएस-2000 (संशोधित) के अंतर्गत "47 मीटर रोटर व्यास के साथ वी 39-500 किलोवॉट" के प्रमाण पत्र के नवीकरण के संबंध में दस्तावेज की समीक्षा / सत्यापन का कार्य आंरम्भ किया गया।
- मैसर्स टीयूवी रीनलैंड इंडिया प्राइवेट लिमिटेड के अधिकारियों के साथ पवन ऊर्जा टरबाइन-प्रकार के प्रमाण पत्र के क्षेत्र में सहयोग के संबंध में विचार-विमर्श का कार्य प्रगति पर है।
- 60 से अधिक पवन ऊर्जा टरबाइन मॉडल के लिए विभिन्न पवन ऊर्जा टरबाइन निर्माताओं द्वारा प्रदत्त प्रलेखन की समीक्षा/सत्यापन 'मॉडल की संशोधित सूची और पवन ऊर्जा टरबाइन (RLMM) के विनिर्माण की मुख्य सूची ज़ारी करने संबंधी कार्य पूर्ण किया गया।
- RLMM प्रक्रिया के रूप में, मानक और प्रमाणन (Standards and Certification) एकक के अपर निदेशक एवं एकक प्रमुख और एकक के अभियंता ने एक नई अतिरिक्त पवन ऊर्जा टरबाइन निर्माता की विनिर्माण सुविधा का सत्यापन किया।
- RLMM समिति की बैठक का आयोजन किया।
- RLMM समिति द्वारा, दिनांक 9 जनवरी 2015, RLMM परिशिष्ट-। सूची को अंतिम रूप दिया गया और ज़ारी की गई।
- पवन ऊर्जा टरबाइन मॉडल और निर्माताओं की समेकित सूची जनवरी
 2015 तक अद्यतन करते हुए तैयार की गई और रा.प.ऊ.संस्थान की वेबसाइट में संलग्न की गई।

- 55 से अधिक पवन ऊर्जा टरबाइन मॉडल के लिए विभिन्न पवन ऊर्जा टरबाइन निर्माताओं द्वारा प्रदत्त प्रलेखन की समीक्षा/ सत्यापन, 'मॉडल की संशोधित सूची और पवन ऊर्जा टरबाइन (RLMM) के विनिर्माण की मुख्य सूची', ज़ारी करने संबंधी कार्य प्रगति पर है।
- ग्रिड सिंक्रोनॉईज़ेशन के साथ तीन प्रोटोटाइप पवन ऊर्जा टरबाइन के संबंध में "एक्स 55 संस्करण: आरबी एक्स टी-27, एचएच 60 मीटर, 50 हर्ट्ज" पवन टरबाइन मॉडल (मैसर्स एक्सॉरन टेक्नोलॉजीज लिमिटेड), पूर्व में किए गए अनुरोध के आधार पर पत्र ज़ारी किया गया।
- पवन ऊर्जा टरबाइन निर्माताओं से प्राप्त विभिन्न पवन ऊर्जा टरबाइन मॉडलों के दस्तावेज़ों की समीक्षा/ सत्यापन, को भारत में प्रोटोटाइप पवन ऊर्जा टरबाइन की स्थापना के संदर्भ में, एमएनआरई के दिशानिर्देशों के अनुसार, कार्य प्रगति पर है।
- मानकों से संबंधित गतिविधियों के लिए भारतीय मानक ब्यूरो के साथ समन्वय कार्य प्रगति पर है।
- दिनांक 9 फ़रवरी 2015 को रा.प.ऊ.संस्थान में मैसर्स "TEJAM ऊर्जा प्रौद्योगिकी पावर उत्पादन" के साथ परियोजनाओं के विषय पर विस्तृत चर्चा / बैठक में भाग लिया।
- निरंतर विकास और गुणवत्ता प्रबंधन प्रणाली में कार्य प्रगति पर है।
- रा.प.ऊ.संस्थान के महानिदेशक, मानक और प्रमाणन एकक के अपर निदेशक एवं एकक प्रमुख और एकक के अभियंता ने मैसर्स टीयूवी रीनलैंड इंडिया प्राइवेट लिमिटेड कंपनी के अधिकारियों के साथ पवन ऊर्जा टरबाइन निर्माता की विनिर्माण सुविधा के सत्यापन के क्षेत्र में सहयोग के संबंध में विस्तृत चर्चा / बैठक में भाग लिया।

पवन ऊर्जा टरबाइन अनुसंधान स्टेशन

पवन गित मौसम 2015 के लिए, प्रचालन और रखरखाव का कार्य जैसे कि पवन ऊर्जा पैनल, नियंत्रण पैनल सभी 200 किलोवॉट के नौ माइकॉन पवन ऊर्जा विद्युत जनरेटरस के सभी सेंसरों की कार्यक्षमता की जांच और नौ ट्रांसफार्मरों के ट्रांसफार्मर-तेल की सफाई और कंडीशिनेंग आदि का कार्य किया गया जिससे कि पवन गित मौसम 2015 में ये निर्वाध रूप से कार्य करते रहें।

लघु और वृहद पवन ऊर्जा टरबाइन परीक्षण, अनुसंधान एवं विकास और पवन ऊर्जा संसाधन निर्धारण सुविधाओं का निष्पादन कार्य और निम्नलिखित भ्रमण समन्वित किए गए:

- 7 जनवरी 2015 को GIZ (इंडो जर्मन ऊर्जा कार्यक्रम), ग्रीन एनर्जी कॉरीडोर से तीन अधिकारियों ने भ्रमण किया।
- 26 फ़रवरी 2015 को "पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग" विषय पर आयोजित 15 वें अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम में 20 प्रतिभागियों ने भाग लिया।
- 27 फ़रवरी 2015 को "राष्ट्रीय विज्ञान दिवस' के अवसर पर जागरूकता उत्पन्न करने हेतु आयोजित कार्यक्रम में कायथर के समीप के तीन उच्चतर माध्यमिक विद्यालयों के 200 छात्र–छात्राओं और आठ कर्मचारियों ने भाग लिया।

सूचना, प्रशिक्षण और न्यावसायिक सेवा

15वाँ अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम (एक माह)

4 फरवरी से 3 मार्च 2015 की अविध में रा.प.ऊ.संस्थान ने "पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग" विषय पर 15वें अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम का सफलतापूर्वक आयोजन किया, इसमें पवन ऊर्जा से संबंधित विषयों को संबोधित किया गया जैसे पवन ऊर्जा और उसका परिचय, पवन ऊर्जा प्रौद्योगिकी, पवन ऊर्जा संसाधन निर्धारण, संस्थापना, प्रचालन और रखरखाव, पवन ऊर्जा क्षेत्रों के विभिन्न पहलु और सीडीएम लाभ के साथ वित्तीय विश्लेषण आदि। यह आईटीईसी / एससीएएपी (SCAAP) देशों के

लिए विशेष प्रशिक्षण पाठ्यक्रम कार्यक्रम है; जो कि आईटीईसी / एससीएएपी (SCAAP) कार्यक्रम के अंतर्गत भारत सरकार, विदेश मंत्रालय, द्वारा प्रायोजित है और नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) द्वारा समर्थित है। यह भारत सरकार का एक विशेष कार्यक्रम है। इस विशेष प्रशिक्षण पाठ्यक्रम कार्यक्रम में 12 देशों (अफगानिस्तान, अल्जीरिया, बांग्लादेश, बोत्सवाना, फिजी, लिथुआनिया, मेडागास्कर, मलेशिया, नाइजीरिया, सूडान, सीरिया और तंजानिया) के 20 प्रतिभागियों ने भाग लिया।

15 वें अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम का एक दृश्य

'पवन' - 44वां अंक जनवरी – मार्च 2015

प्रशिक्षण कार्यक्रम का उद्घाटन सेंट पीटर विश्वविद्यालय, चेन्नई के उपकुलपति डॉ रामचंद्र मूर्ति द्वारा किया गया।

प्रशिक्षण कार्यक्रम के 28 दिनों की अवधि में निर्धारित 47 कक्षा व्याख्यान रा.प.ऊ.संस्थान के वैज्ञानिकों और बाहरी विशेषज्ञों, पवन ऊर्जा टरबाइन निर्माता, पवन ऊर्जा टरबाइन क्षेत्र विकासकर्ता, परामर्शदाता, शिक्षाविदों, उपयोगिता और आईपीपी अधिकारियों द्वारा दिए गए। सभी व्याख्याताओं को उनके क्षेत्रों में कई वर्षों का अनुभव था। सभी प्रतिभागियों को व्यावहारिक प्रशिक्षण अनुभव देने के लिए कॉयथर स्थित पवन ऊर्जा टरबाइन परीक्षण

स्टेशन और पवन ऊर्जा टरबाइन अनुसंधान स्टेशन WTTS / WTRS में पवन ऊर्जा टरबाइन क्षेत्रों में भ्रमण हेतु ले जाया गया; और पांडिचेरी में मैसर्स ग्लोबल विंड पावर लिमिटेड, मैसर्स मिनवायु, (पांडिचेरी); कायथर और कन्याकुमारी में पवन ऊर्जा टरबाइन स्टेशन और पवन ऊर्जा टरबाइन अनुसंधान स्टेशन का भ्रमण किया।

स्ट्रक्चरल इंजीनियरिंग रिसर्च सेंटर (एसईआरसी), चेन्नई के मुख्य वैज्ञानिक डॉ जी राघव, समापन समारोह के मुख्य अतिथि थे, उन्होंने सभी प्रतिभागियों को पाठ्यक्रम प्रमाण पत्र प्रदान किए।

17 वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम (3 दिवसीय)

18 मार्च से 20 मार्च 2015 की अविध में रा.प.ऊ.संस्थान ने "पवन ऊर्जा प्रौद्योगिकी " विषय पर 17वें राष्ट्रीय प्रशिक्षण कार्यक्रम का सफलतापूर्वक आयोजन किया, इसमें पवन ऊर्जा से संबंधित विषयों को संबोधित किया गया जैसे पवन ऊर्जा और उसका परिचय, पवन ऊर्जा प्रौद्योगिकी, पवन ऊर्जा संसाधन निर्धारण, संस्थापना, प्रचालन और रखरखाव, पवन ऊर्जा क्षेत्रों के विभिन्न पहलु और सीडीएम लाभ के साथ वित्तीय विश्लेषण आदि। इस प्रशिक्षण पाठ्यक्रम कार्यक्रम में देश के 13 राज्यों के, विभिन्न संगठनों के, 43 प्रतिभागियों ने भाग लिया। इस राष्ट्रीय प्रशिक्षण कार्यक्रम का उद्घाटन मैसर्स गमेशा पवन ऊर्जा टरबाइन प्राइवेट लिमिटेड, चेन्नई के सहायक उपाध्यक्ष डॉ ई श्रीवॉल्सन ने किया।

उपर्युक्त राष्ट्रीय प्रशिक्षण कार्यक्रम के समापन समारोह की मुख्य अतिथि राष्ट्रीय महासागर प्रौद्योगिकी संस्थान (एनआईओटी), चेन्नई की मुख्य वैज्ञानिक,डॉ पूर्णिमा जलिहल थी, उन्होंने सभी प्रतिभागियों को पाठ्यक्रम प्रमाण पत्र प्रदान किए।

प्रशिक्षण पाठ्यक्रम सामग्री ज़ारी करते हुए डॉ ई श्रीवॉल्सन।

प्रतिभागियों को पाठ्यक्रम प्रमाण पत्र प्रदान करते हुए डॉ पूर्णिमा जलीहल।

प्रदर्शनियों में प्रतिभागिता

रा.प.ऊ.संस्थान ने निम्न प्रदर्शनियों में अपने प्रदर्शनी कक्ष संस्थापित किए जिसमें विभिन्न स्तर के आगंतुकों के साथ रा.प.ऊ.संस्थान की गतिविधियों और सुविधाओं के विषय में जागरूकता उत्पन्न करते हुए ज्ञान साझा किया गया।

• 3 से 7 जनवरी 2015 की अवधि में भारतीय विज्ञान कांग्रेस एसोसिएशन द्वारा 102वीं भारतीय विज्ञान कांग्रेस 'भारत का गौरव 2015' का आयोजन मुंबई विश्वविद्यालय, मुंबई में किया गया। इस प्रदर्शनी में राष्ट्रीय पवन ऊर्जा संस्थान के प्रदर्शनी कक्ष को 'उत्तम स्टाल डिजाइन' से सम्मानित किया गया।

• 15 से 17 फरवरी 2015 की अवधि में नई दिल्ली में भारतीय नवीकरणीय ऊर्जा विकास एजेंसी (इरेडा) द्वारा प्रथम नवीकरणीय ऊर्जा निवेश मिलन-समारोह और प्रदर्शनी "रीनवेस्ट 2015" का आयोजन किया गया। विद्युत, कोयला और नवीन एवं नवीकरणीय ऊर्जा मंत्रालय के माननीय केंद्रीय राज्य मंत्री (स्वतंत्र प्रभार) श्री पीयुष गोयल जी ने रा.प.ऊ.संस्थान के प्रदर्शनी कक्ष का उद्घाटन किया।

रा.प.ऊ.संस्थान (NIWE) – IWTMA द्वारा आयोजित "ज्ञान मंच"

• 28 जनवरी 2015 को रा.प.ऊ.संस्थान (NIWE) और IWTMA के द्वारा संयुक्त रूप से पवन ऊर्जा के विभिन्न क्षेत्रों में हुई नवीनतम विकसित प्रगति से रा.प.ऊ.संस्थान और उद्योग जगत को ज्ञान लाभ देने के उद्देश्य से, पूर्व की तरह, एक "ज्ञान मंच" का आयोजन किया गया। पूर्व में आयोजित "ज्ञान मंच" की भांति इस "ज्ञान मंच" का आयोजन मैसर्स एमएससी सॉफ्टवेयर प्राइवेट लिमिटेड द्वारा "पवन ऊर्जा हेतु आभासी सतत तंत्र" ("Virtual Simulation for Wind Energy") बंगलौर द्वारा आयोजित पवन ऊर्जा के विकास हेतु किया गया। पवन ऊर्जा क्षेत्रों के विभिन्न पेशेवरों, रा.प.ऊ.संस्थान के वैज्ञानिकों और अन्य अनुसंधान एवं विकास संस्थानों ने इस "ज्ञान मंच" में भाग लिया।

राष्ट्रीय पवन ऊर्जा संस्थान परिसर में आगंतुक

जनवरी से मार्च 2015 की अविध में निम्नलिखित आगुंतकों संस्थानों/ के भ्रमण के अवसर पर पवन ऊर्जा के क्षेत्रों की स्थिति, गतिविधियाँ, स्पष्टीकरण, प्रस्तुतियों का समनवय किया गया, परिसर में उपलब्ध नवीकरणीय ऊर्जा की सुविधा आदि के विषय में विस्तार से प्रदर्शन और वर्णन किया गया।

- 12 जनवरी 2015 को स्वामीनाथन रिसर्च फाउंडेशन द्वारा समनवय किए गए विभिन्न विद्यालयों के 14 छात्रों ने भ्रमण किया।
- 29 जनवरी 2015 को लॉयला आईसीएएम अभियांत्रिकी और प्रौद्यिगिकी महाविद्यालय के 63 छात्रों और 2 कार्मिकों ने भ्रमण किया।
- 18 फ़रवरी 2015 को राष्ट्रीय तकनीकी शिक्षक प्रशिक्षण और अनुसंधान संस्थान (NITTTR), तारामणि के 25 प्रशिक्षण (पॉलिटेक्निक शिक्षकों) प्रतिभागियों ने भ्रमण किया।
- 11 मार्च 2015 को एसआरएम विश्वविद्यालय द्वारा समनवय किए गए संयुक्त राज्य अमेरिका के जॉर्जिया विश्वविद्यालय, 16 अंतरराष्ट्रीय प्रतिभागियों ने भ्रमण किया।
- 11 मार्च 2015 को राष्ट्रीय तकनीकी शिक्षक प्रशिक्षण और अनुसंधान संस्थान (NITTTR), तारामणि के 25 प्रशिक्षण (पॉलिटेक्निक शिक्षकों) प्रतिभागियों ने भ्रमण किया।
- 16 मार्च 2015 को 'मार्ग डिजाइन और वास्तुकला स्वर्णभूमि संस्थान' (MIDAS) के 34 छात्रों और 2 कार्मिकों ने भ्रमण किया।

अभियाँत्रिकीय सेवा प्रभाग

सात अतिरिक्त कैमरों के क्रय और स्थापना का कार्य प्रगति पर है।

- वीडियो सम्मेलन उपकरण और सुविधा संस्थापित करने हेतु निविदाएं
 प्राप्त की गई हैं और कार्य प्रगति पर है।
- 380 किलोवॉट सौर ऊर्जा फोटो वॉल्टेक विद्युत संयंत्र, छत के ऊपर संस्थापित करने हेतु, एक समिति का गठन किया गया है, तकनीकी बोली का तुलनात्मक कार्य प्रगति पर है।
- 380 किलोवॉट और 62.5 किलोवॉट का डीज़ल जनरेटर क्रय करने के लिए तकनीकी बोली का तुलनात्मक कार्य पूर्ण किया गया। समिति ने वित्तीय बोली खोलने के लिए सिफारिश की है।

- 'सौर ऊर्जा जल पम्प' क्रय करने संबंधी निविदाएं खोली गईं और उनके क्रय आदेश ज़ारी करने का कार्य प्रगति पर है।
- 160 किलोवॉट से 200 किलोवॉट भार के मांग की आपूर्ति के अनुरूप तिमळनाडु विद्युत बोर्ड (टीएनईबी) के वर्तमान ट्रांसफार्मर (सीटी) और संभावित ट्रांसफार्मर (पीटी) के क्रय हेत् माँग-पत्र प्रस्तुत किया गया है।
- रा.प.ऊ.संस्थान के अग्र भाग की ओर की परिसर-दीवार के निर्माण का कार्य प्रगति पर है।
- रा.प.ऊ.संस्थान के 'स्थानीय क्षेत्र नेटवर्क' (लैन नेटवर्किंग) की पुनःस्थापना करने हेतु प्रस्ताव भेजा गया तदपश्चात तकनीकी बोली हेतु मांगपत्र प्रस्तुत किया गया।

• रा.प.ऊ.संस्थान भवन में मुख्य द्वार के सम्मुख एक बागवानी पर्यावरण सौम्य नामपट्ट का निर्माण किया गया है।

रा.प.ऊ.संस्थान भवन में मुख्य द्वार के सम्मुख बागवानी नामपट्ट।

सौर ऊर्जा विकिरण संसाधन निर्धारण

- 19 से 27 जनवरी 2015 की अवधि में सौर ऊर्जा विकिरण संसाधन निर्धारण क्षेत्रों का सूक्ष्मरूप से मूल्यांकन करने के पश्चात (माइक्रोसाइटिंग) सीतामऊ में और तद्पश्चात नीमच के सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशन का स्थानांतरण मध्य प्रदेश राज्य के सीतामऊ में किया गया।
- कर्नाटक राज्य में तीन और आंध्र प्रदेश राज्य में छह सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशन और सात पॉरनोमीटर्स, सौर ऊर्जा सेंसरों के कैलिब्रेशन, वाणिज्यिक प्रणाली के अंतर्गत, किए गए।
- सैटेलाइट आँकड़ों के गुणवत्ता नियंत्रण (QC) की 3-टियर पद्धित द्वारा प्रदान की गई, शेष 45 स्थानों की गुणवत्ता नियंत्रण जांच का कार्य सौर ऊर्जा मानचित्र तैयारी करने हेतु पूर्ण किया गया और गुणवत्ता नियंत्रण सांख्यिकी की रिपोर्ट, मैसर्स सन्ट्रेस कपंनी, जर्मनी को उनकी टिप्पणियों और सिफारिशों के लिए, प्रेषित की गई।
- मृदा प्रयोगात्मक आँकड़ा संग्रहण केंद्र, प्रथ्युषा प्रौद्योगिकी एवं प्रबंधन संस्थान (PITAM), तिरुवल्लुर और NISE, गुड़गांव में, संस्थापित किया गया।
- मृदा प्रयोगात्मक आँकड़ा संग्रह का कार्य जारी रखा गया जिससे कि सौर उर्जा सेंसरों के प्रभाव का अध्ययन कार्य चलता रहे।
- सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशन के 15 स्टेशनों के गुणवत्ता नियंत्रण के आँकड़े वाणिज्यिक प्रणाली के अंतर्गत, 10 ग्राहकों को प्रदान किए गए।

सौर ऊर्जा विकिरण संसाधन निर्धारण एकक द्वारा संचालित प्रशिक्षण कार्यक्रम:

• 4 से 7 फ़रवरी 2015 की अवधि में, NISE अधिकारियों को, सौर ऊर्जा

- विकिरण संसाधन निर्धारण की गतिविधियों पर रा.प.ऊ.संस्थान, चेन्नई में प्रशिक्षण प्रदान किया गया।
- 9 जनवरी 2015 को "हरित ऊर्जा परिसर" हेतु रा.प.ऊ.संस्थान, चेन्नई में बैठक आयोजित की गई और जीआईज़ेड अधिकारी, डॉ इन्द्रदीप मित्रा, अन्स्ट एंड यंग कम्पनी के अधिकारियों, सुश्री अमृता गांगुली और श्री केजेसी विनोद कुमार के साथ कायथर का भ्रमण किया जिससे कि जीआईज़ेड परियोजना में सौर ऊर्जा विकिरण संसाधन निर्धारण की गतिविधियों का अध्य्यन किया जा सके।

आगंतुकों का एकक में भ्रमण

- जीआईज़ेड (GIZ), नई दिल्ली के अधिकारियों ने सौर ऊर्जा विकिरण संसाधन निर्धारण (SRRA) और एम्स स्टेशन तथा प्रथ्युषा प्रौद्योगिकी एवं प्रबंधन संस्थान (PITAM), तिरुवल्लुर में अंशांकन सुविधाओं का भ्रमण किया।
- 18 से 20 फ़रवरी 2015 की अविध में मैसर्स सनट्रेस कपंनी, जर्मनी के प्रबंध निदेशक, डॉ रिचर्ड मेथेर ने रा.प.ऊ.संस्थान, चेन्नई का भ्रमण किया और सौर ऊर्जा विकिरण संसाधन निर्धारण और सैटेलाइट ऑकड़ों की गुणवत्ता के विभिन्न पक्षों पर विचार-विमर्श किया।
- 2 से 7 फ़रवरी 2015 की अवधि में मैसर्स सन्ट्रेस कपंनी, दिल्ली के श्री कौशल छतबर ने रा.प.ऊ.संस्थान, चेन्नई का भ्रमण किया और आँकड़ों की गुणवत्ता नियंत्रण एल्गोरिथ्म की कोटि उन्नत करने हेतु विभिन्न पक्षों पर विचार-विमर्श किया।

राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों द्वारा बाह्य मंचो में आमंत्रित व्याख्यान /बैठकों में प्रतिभागिता

डॉ एस गोमतीनायगम, महानिदेशक, रा.प.ऊ.संस्थान

- 5 से 8 जनवरी 2015 की अविध में गुजरात राज्य के भुज में स्थायी संसदीय समिति की बैठक।
- 12 जनवरी 2015 को एमएनआरई नई दिल्ली में 21वीं वित्त समिति की बैठक।
- 13 जनवरी 2015 को एमएनआरई नई दिल्ली में अनुसंधान एवं विकास परियोजना मूल्यांकन समिति की बैठक।
- 19 जनवरी 2015 को पल्लावरम में रोमेक्स नवीन व्यापार केंद्र का उद्घाटन।
- 12 फ़रवरी 2015 को नई दिल्ली में, आरई के अंतर्गत, भारत-जर्मन ऊर्जा मंच में उप-समूह 2 की बैठक।
- 6 से 7 मार्च 2015 की अवधि में विद्युत, कोयला, नवीन एवं नवीकरणीय ऊर्जा मंत्रालय के माननीय मंत्री (स्वतंत्र प्रभार) श्री पीयूष गोयल जी ने तिमलनाडु राज्य का भ्रमण किया और TEDA के मुख्य प्रबंध निदेशक और अध्यक्ष एवं TANGEDCO के अध्यक्ष एवं ऊर्जा विभाग के सचिव के साथ विचार-विमर्श किया। रा.प.ऊ.संस्थान के महानिदेशक; नवीन एवं नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) की संयुक्त सचिव (पवन ऊर्जा) श्रीमती वर्षा जोशी, भा.प्र.से., ने SLDC / TANGEDCO के प्रचालन की समीक्षा की और अध्ययन किया; तथा IWPA और TANGEDCO के अधिकारियों के साथ विचार-विमर्श करते हुए और ग्रिड में से 100% पवन ऊर्जा निकासी हेतु और तेलंगाना जैसे पड़ोसी राज्यों को विद्युत विक्रय की संभावना खोजने को कहा।
- 13 मार्च 2015 को एएमईटी विश्वविद्यालय में पारस्परिक सहयोग पर विचार विमर्श।
- 26 मार्च 2015 को जेपीआर प्रौद्योगिकी संस्थान में राष्ट्रीय स्तर की कार्यशाला-एवं-सम्मेलन में विशेष मुख्य अतिथि।
- 28 मार्च 2015 को सत्यभामा विश्वविद्यालय में अनुसंधान-बोर्ड की बैठक।
- 30 मार्च 2015 को श्रीविल्लीपुतुर में कलसालिंगम विश्वविद्यालय में शैक्षणिक परिषद की तेरहवीं बैठक।

श्री के भूपति, अपर निदेशक एवं एकक प्रमुख, WRA

 3 जनवरी 2015 को पोर्ट ब्लेयर में "अंडमान एवं निकोबार द्वीप समूह में नवीकरणीय ऊर्जा की संभावना" विषय पर आयोजित सम्मेलन में "अंडमान एवं निकोबार द्वीप समूह में पवन ऊर्जा क्षमता" विषय पर व्याख्यान दिया।

- 5 से 8 जनवरी 2015 की अवधि में गुजरात राज्य के भुज में स्थायी संसदीय समिति की बैठक।
- 10 फ़रवरी 2015 को एमएनआरई, नई दिल्ली में बैठक।
- 23 फ़रवरी 2015 को एमएनआरई, नई दिल्ली में भारत में पवन ऊर्जा की संभावना और उसका पुनर्मूल्यांकन विषय पर बैठक।
- 16 मार्च 2015 को केरल राज्य के ऊर्जा सचिव के साथ ANERT तिरुवनंतपुरम में 'पवन ऊर्जा मूल्यांकन समिति' की बैठक।

ए सेंथिल कुमार, अपर निदेशक एवं एकक प्रमुख, S&C

• 16 से 17 मार्च 2015 की अवधि में एमएनआरई, नई दिल्ली में "सामग्री समिति का विधेयक (बिल ऑफ मेटीरयल)" विषय पर बैठक।

पी कनगवेल, अपर निदेशक एवं एकक प्रमुख, ITCS

- 23 जनवरी 2015 को सेंट जोसेफ प्रौद्योगिकी संस्थान चेन्नई में 'पवन ऊर्जा प्रौद्योगिकी और अनुप्रयोग" विषय पर व्याख्यान।
- 18 फ़रवरी 2015 को राष्ट्रीय तकनीकी शिक्षक प्रशिक्षण संस्थान और अनुसंधान (NITTTR), चेन्नई में 'पवन ऊर्जा प्रौद्योगिकी और अनुप्रयोग "विषय पर व्याख्यान।
- 2 4 फ़रवरी 2 0 1 5 को तिरूचरापल्ली स्थित भारतीदासन विश्वविद्यालय में अकादिमिक स्टाफ कॉलेज में UGCASC के पुनश्चर्या पाठ्यक्रम हेतु "पुस्तकालय में ऊर्जा दक्षता" विषय पर व्याख्यान।
- 11 मार्च 2015 को राष्ट्रीय तकनीकी शिक्षक प्रशिक्षण संस्थान और अनुसंधान (NITTTR), चेन्नई में 'पवन ऊर्जा प्रौद्योगिकी और अनुप्रयोग"विषय पर व्याख्यान।
- 2 8 मार्च 2 0 1 5 को सत्यभामा विश्वविद्यालय, चेन्नई में डब्ल्यूडब्ल्यूएफ इंडिया के सहयोग से आयोजित 'पृथ्वी घंटा आंदोलन कार्यक्रम' (Earth Hour Movement Programme) में मुख्य अतिथि।

एम अनवर अली, अपर निदेशक एवं एकक प्रमुख, ESD

 2 से 10 मार्च 2015 की अविध में अंडमान एवं निकोबार प्रशासन के लिए, 200 से 250 किलोवॉट, पवन ऊर्जा टरबाइन क्षेत्रों के लिए व्यवहार्यता और तार्किक / निवेश कल विषयक अध्ययन एवं प्रस्तावना हेतु अंडमान एवं निकोबार का भ्रमण किया।

- **डॉ जी गिरिधर,** निदेशक एवं अध्यक्ष, SRRA
- 25 से 26 फ़रवरी 2015 की अवधि में कोयंबटूर स्थित पीएसजी प्रौद्योगिकी महाविद्यालय में " निर्माण उपकरणों के तकनीकी विकास के लिए दृष्टिकोण" विषय पर व्याख्यान।
- 5 मार्च 2015 को सेलम स्थित 'सोना अभियांत्रिकी महाविद्यालय' में "नवीकरणीय ऊर्जा और उसके अनुप्रयोग पर अभिनव रणनीति -ISREA'15' विषय पर आयोजित अंतर्राष्ट्रीय सम्मेलन में व्याख्यान।
- 11 मार्च 2015 को कराइकुडी स्थित 'अलगप्पा चेट्टियार अभियांत्रिकी और प्रौद्योगिकी महाविद्यालय' में "राष्ट्रीय स्तर की विद्युत इलेक्ट्रॉनिक और ड्राइव (Ped '15)" विषय पर आयोजित सम्मेलन में व्याख्यान।

आर कार्तिक, सहायक निदेशक (तकनीकी) अनुबंध

 3 मार्च 2015 को पुडुचेरी स्थित 'श्री मनाकुला विनायकर प्रौद्योगिकी संस्थान' में 'सौर ऊर्जा विकिरण और सौर प्रौद्योगिकी' विषय पर व्याख्यान।

प्रसून कुमार दास, सहायक निदेशक (तकनीकी) अनुबंध

 28 फ़रवरी 2015 को अंबात्तुर, चेन्नई में एलआईसी इंजीनियर्स के लाभ हेतु 'सौर ऊर्जा प्रणाली' विषय पर व्याख्यान।

विदेश भ्रमण

- श्री जे बॉस्टीन, सहायक निदेशक (तकनीकी) ने, 3 से 5 मार्च 2015 की अविध में, मॉरीशस देश का भ्रमण किया जहाँ मॉरीशस की Universite des Mascareignes, में आयोजित अंतर्राष्ट्रीय सम्मेलन (RESUS 2015) में "Comparison of Merra, Era-Interim Re-analysis wind profile data with Actual measurements in Semi Complex Terrain in India" विषय पर शोध पत्र प्रस्तुत किया। (लेखक: श्री के भूपित, जे बॉस्टीन, डॉ एस गोमतीनायगम, श्री बी कृष्णन)।
- राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक ने 20 से 22 मार्च 2015 की अविध में, जिनेवा स्विट्जरलैंड का भ्रमण किया जहाँ स्पेन देश के व्यापार पहल समूह / बिग समूह द्वारा राष्ट्रीय पवन ऊर्जा संस्थान (NIWE) को पुरस्कार हेतु चयनित किया गया और 'अंतर्राष्ट्रीय गुणवत्ता युग 'स्वर्ण श्रेणी' पुरस्कार से पुरस्कृत किया गया।

प्रकाशन

• डॉ एस गोमतीनायगम (2015); पवन ऊर्जा टरबाइन क्षेत्रों का पुनरुद्धार – भारत में समस्याएं और प्रस्ताव। भारतीय पवन ऊर्जा, 1 (2), 11।

20 से 24 मार्च 2015 की आवधि में 'स्वर्ण श्रेणी' के अंतर्गत (21 से 22 मार्च 2015) जिनेवा, स्विट्जरलैंड में 'सेंचुरी अंतर्राष्ट्रीय गुणवत्ता युग पुरस्कार'; राष्ट्रीय पवन ऊर्जा संस्थान का पुरस्कार प्राप्त करते हुए राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक। (YouTube लिंक: https://www.youtube.com/watch?v=y1qzFfyE16c)

04 फरबरी – 03 मार्च 2015 की अवधि में "पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग" विषय पर 15वें अंतर्रराष्ट्रीय प्रशिक्षण पाठ्यक्रम और 18-20 मार्च 2015 की अवधि में "पवन ऊर्जा प्रौद्योगिकी" विषय पर 17वें राष्ट्रीय प्रशिक्षण पाठ्यक्रम में राष्ट्रीय पवन ऊर्जा संस्थान के निम्नलिखित कार्मिको ने व्याख्यान दिया।

क्र.सं.	व्याख्यान–विषय	वक्ता		
01	पवन ऊर्जा प्रौद्योगिकी की स्थिति और परिचय	-		
	पवन ऊर्जा टरबाइन टॉवर संकल्पना	डॉ एस गोमतीनायगम		
02	पवन ऊर्जा के विकास में रा.प. ऊ.संस्थान की भूमिका			
	भारत में पवन ऊर्जा का विकास	श्री पी. कनगवेल		
	पवन ऊर्जा टरबाइन प्रौद्योगिकी की पर्यावरणीय अवधारणाएं			
03	पवन ऊर्जा टरबाइन अवयव			
	ड्राइव ट्रेन संकल्पना	श्री जे सी. डेविड सोलोमन		
	पवन ऊर्जा टरबाइन की वायुगतिकीय अवधारणाएं			
04	पवन ऊर्जा टरबाइन गियरबॉक्स के डिजाइन का मूल्यांकन	श्री एन राजकुमार		
05	पवन ऊर्जा टरबाइन जेनरेटर और उनके प्रकार	श्री एम अनवर अली		
06	पवन ऊर्जा टरबाइन प्रणाली की सुरक्षा-नियंत्रण पद्धति	श्री एस अरुळसेल्बन		
07	पवन ऊर्जा टरबाइन फाउंडेशन संकल्पना श्री राजेश कत्याल			
	लघु पवन ऊर्जा टरबाइन और उच्च वर्ण संकर प्रणाली	W STATE IN THE		
08	पवन ऊर्जा टरबाइन के प्रकार का प्रमाणन और			
	IEC 61499-1 के अनुरूप अभिकल्पना	श्री ए सेंथिल कुमार		
09	पवन ऊर्जा टरबाइन परीक्षण और मापन तकनीक	श्री एस ए मैथ्यू		
10	पवन ऊर्जा टरबाइन परीक्षण हेतु उपकरणीकरण	श्री एम श्रवणन		
	विद्युत वक्र मापन	·		
11	परीक्षण सुरक्षा और कार्य पद्धति श्री भुक्या राम दास			
12	पवन ऊर्जा संसाधन निर्धारण और तकनीक	श्री के भूपति		
13	रिमोट सेंसिग उपकरण पद्धति द्वारा पवन ऊर्जा संसाधन निर्धारण	सुश्री एम सी लावण्या		
14	पवन ऊर्जा मापन और उपकरणीकरण	श्री बी कृषण्न		
15	पवन ऊर्जा मापन हेतु दिशा निर्देश	श्री जे. बॉस्टीन		
	पवन ऊर्जा टरबाइन क्षेत्र के डिजाइन और लेऑउट	ં ગાંગા વાસ્ટામ		
16	पवन ऊर्जा आँकड़ो का मापन और विश्लेषण	श्रीमती जी अरिवृक्कोडी		
17	पवन ऊर्जा टरबाइन ग्रिड एकीकरण	श्रीमती दीपा कुरुप		
18	अपतटीय पवन ऊर्जा : एक सिंहावलोकन	श्री एम. जॉएल फ्रेंकलिन असारिया		
19	भारत सरकार की नीतियां, योजनाएं	श्री मोहम्मद हुसैन		
20	सौर ऊर्जा और सौर विकिरण स्रोत निर्धारण	श्री आर. कार्तिक		

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई के वैज्ञानिकों और कार्मिकों द्वारा प्रशिक्षण / सम्मेलन / सेमिनार में प्रतिभागिता

श्रीमती अनुराधा बाबू, ESO

- 8 और 9 जनवरी 2015 की अवधि में राजाजी भवन, चेन्नई में आयोजित भारत सरकार, लेखा और वित्त संस्थान के क्षेत्रीय प्रशिक्षण केंद्र में 'क्रय और निपटान प्रबंधन' विषय पर प्रशिक्षण।
- दिनांक 20 से 22 जनवरी 2015 की अवधि में राजाजी भवन, चेन्नई में आयोजित भारत सरकार, लेखा और वित्त संस्थान के क्षेत्रीय प्रशिक्षण केंद्र में 'अनुशासनात्मक कार्रवाई और आचरण नियमावली' विषय पर प्रशिक्षण।

श्री टी गणेशमूर्ति, JEA

- 8 और 9 जनवरी 2015 की अविध में राजाजी भवन, चेन्नई में आयोजित भारत सरकार, लेखा और वित्त संस्थान के क्षेत्रीय प्रशिक्षण केंद्र में 'क्रय और निपटान प्रबंधन' विषय पर प्रशिक्षण।
- 27 से 28 जनवरी 2015 की अविध में राजाजी भवन, चेन्नई में आयोजित भारत सरकार, लेखा और वित्त संस्थान के क्षेत्रीय प्रशिक्षण केंद्र में 'अवकाश नियम और सेवा पुस्तिकाओं का रखरखाव' विषय पर प्रशिक्षण।

अनुसंधान एवं विकास एकक

 23 फ़रवरी 2015 को SWT उच्च वर्ण संकर प्रणाली की स्थापना हेतु पूर्व व्यवहार्यता रिपोर्ट तैयार करने के लिए आइज़ोल, मिजोरम का भ्रमण किया।

पवन ऊर्जा टरबाइन परीक्षण

 2 से 4 फ़रवरी 2015 की अविध में श्री एम श्रवणन और श्री भुक्या रामदास ने मैसर्स मैथ वर्क्स इंडिया प्राइवेट लिमिटेड बंगलौर द्वारा आयोजित 'मैट लैब फंडामेंटलस' विषय पर आयोजित प्रशिक्षण में भाग लिया।

मानक और प्रमाणन

6 मार्च 2015 को अपर निदेशक एवं मानक और प्रमाणन एकक के प्रमुख, तथा मानक और प्रमाणन एकक के अभियंता ने 'एस.ए.सी.एस. और एम.ओ.एस.ई.एस अनुप्रयोगों पर फिक्स्ड और फ्लोटिंग अपतटीय संरचनाओं 'विषय पर एनआईओटी, चेन्नई में मैसर्स आर्येटेक समुद्री और अपतटीय सेवा (प्राइवेट) लिमिटेड कंपंनी द्वारा आयोजित संगोष्ठी में भाग लिया।

डॉ जी गिरिधर, निदेशक एवं एकक प्रमुख, SRRA

 दिनांक 13 मार्च 2015 को 'ऊर्जादक्षता सौर ऊर्जा / हरित ऊर्जा भवन'
 विषय पर मैसर्स एचबी प्रबंधन और इंजीनियरिंग कंसल्टेंट्स प्राइवेट लिमिटेड कंपनी द्वारा मदुरै में आयोजित कार्यशाला में भाग लिया।

स्मार्ट ग्रिड अवधारणाएं – कार्यशाला

• 20 जनवरी 2015 को रा.प.ऊ.संस्थान के सभी एककों के प्रमुखों ने iPLON, चेन्नई द्वारा स्मार्ट ग्रिड अवधारणाएं विषय पर आयोजित एक दिवसीय कार्यशाला में भाग लिया।

IPMA विषय पर कार्यशाला

• 28 से 31 जनवरी 2015 की अवधि में अंतर्राष्ट्रीय परियोजना प्रबंधन एसोसिएशन (IPMA), चेन्नई द्वारा रेसी डेंसी होटल में आयोजित 'विश्व स्तर पर मान्यता IPMA स्तर डी- प्रमाणन हेतु अग्रणी परियोजना प्रबंधन' विषय पर सर्वश्री एम जॉएल फ्रेंकलिन असॉरिया, जे बॉस्टीन, बी कृष्णन और भूक्या रामदास ने चार दिवसीय कार्यशाला में भाग लिया।

छत पर सौर ऊर्जा प्रयोग-सर्वोत्तम प्रथाएं विषय पर कार्यशाला

• 30 जनवरी 2015 को TEDA द्वारा आयोजित 'छत पर सौर ऊर्जा प्रयोग- सर्वोत्तम प्रथाएं' विषय पर आयोजित कार्यशाला में रा.प.ऊ.संस्थान के सभी एककों के प्रमुखों तथा संयुक्त सचिव और अन्य वरिष्ठ अधिकारियों ने भाग लिया।

ग्रिड से जुड़े सौर ऊर्जा विषय पर कार्यशाला

• दिनांक 30 जनवरी 2015 को 'राज्य के क्षेत्रों के लिए नवीकरणीय ऊर्जा की एसोसिएशन' (AREAS) द्वारा आयोजित 'ग्रिड से जुड़े सौर ऊर्जा' विषय पर आयोजित कार्यशाला में रा.प.ऊ.संस्थान के सभी एककों के प्रमुखों ने भाग लिया।

RE-INVEST 2015

• दिनांक 15 से 17 फ़रवरी 2015 की अवधि में इरेडा द्वारा दिल्ली में आयोजित 'प्रथम नवीकरणीय ऊर्जा वैश्विक निवेशक सम्मेलन और प्रदर्शनी' (RE-INVEST 2015) में डॉ एस गोमतीनायगम, राजेश कत्याल, डेविड सोलोमन, दीपा कुरुप, के भूपति, एम जॉयल फ्रेंकलिन असॉरिया, ए जी रंगराज, जे बॉस्टीन, एम सी लवण्या, एस ए मैथ्यू, एम शरवणन, भुक्या रामदास, ए सैंतिल कुमार, एन राजकुमार, पी कनगवेल, एम अनवर अलि, डॉ जी गिरिधर और आर शशिकुमार ने भाग लिया।

विंडसिम (WindSIM) विषय पर प्रशिक्षण

 रा.प.ऊ.संस्थान,चेन्नई में मैसर्स विंडसिम (WindSIM) कम्पनी के सीटीओ और संस्थापक श्री अर्ने आर ग्रॉव्दह्ल द्वारा आयोजित पाँच दिवसीय प्रशिक्षण कार्यक्रम में डॉ एस गोमतीनायगम, राजेश कत्याल, डेविड सोलोमन, दीपा कुरुप, नवीन मुत्थु, के भूपति, एम जॉयल फ्रेंकलिन असॉरिया, ए जी रंगराज, जे बॉस्टीन, एम सी लवण्या, जी अरिवुक्कोडी, टी सुरेश कुमार, बी कृष्णन, आर विनोद कुमार, एस ए मैथ्यू, एम शरवणन, भुक्या रामदास, एस परमशिवम और सी स्टीफन जिर्मियास ने भाग लिया।

राष्ट्रीय पवन ऊर्जा संस्थान का स्थापना दिवस २०१५

दिनांक 21 मार्च 2015 को लगातार तीसरे वर्ष राष्ट्रीय पवन ऊर्जा संस्थान का "स्थापना दिवस", 17वाँ जन्मदिवस, विविध कार्यक्रमों के साथ मनाया गया। दिनांक 21 मार्च 2015 को प्रातः 9.30 बजे से दोपहर 12.30 बजे के मध्य, रा.प.ऊ.संस्थान के इतिहास में प्रथम बार, नवीकरणीय ऊर्जा संसाधनों और उनके अनुप्रयोगों के विषय में जागरूकता उत्पन्न करने के लिए, रा.प.ऊ.संस्थान की सभी सुविधाओं का भ्रमण करने के लिए, जनसाधारण में 'खुला दिवस' घोषणा की गई।

राष्ट्रीय पवन ऊर्जा संस्थान और भारत के 'प्रकृति के लिए विश्व व्यापक निधि' (डब्ल्यूडब्ल्यूएफ) संस्थान के सहयोग से विभिन्न प्रतियोगिताएं आयोजित की गईं जिसमें सम्पूर्ण तिमलनाडु के 30 विद्यालयों से 600 से अधिक छात्र – छात्राओं ने प्रतियोगिताओं में भाग लिया। इस उपलक्ष्य में समापन समारोह और पुरस्कार वितरण समारोह आयोजित किया गया जिसमें, एमएनआरई के पूर्व सलाहकार और रा.प.ऊ.संस्थान के पूर्व कार्यपालक निदेशक, श्री के.पी. सुकुमारन ने रा.प.ऊ.संस्थान के सम्मेलन हॉल में रा.प.ऊ.संस्थान के कार्मिकों को स्मृति चिन्ह और प्रतियोगिताओं के विजेताओं को पुरस्कार प्रदान किए और स्थापना दिवस व्याख्यान दिया।

रा.प.ऊ.संस्थान के स्थापना दिवस के 'खुला दिवस' के अवसर पर जनसाधारण द्वारा भ्रमण की एक झलक।

रा.प.ऊ.संस्थान के स्थापना दिवस की एक झलक

भारतीय ऊर्जा प्रणाली के परिप्रेक्ष्य में पवन ऊर्जा की प्रासंगिकता

डॉ सी शर्मीला, सहायक प्रौफेसर, वरिष्ठ ग्रेड EEE, एसी टेक, अन्ना विश्वविद्यालय, चेन्नई,, भारत। ई मेलः Sharmeela@annauniv.edu, sharmeela20@yahoo.com पी तंगवेलू, मुख्य अभियंता(सेवानिवृत), तमिळ्नाडु राज्य विद्युत बोर्ड, चेन्नई, भारत। ई मेलः pttangavelu@yahoo.com

सारांश

जीवाश्म ईंधन संसाधनों का निरंतर घटना चिंता का विषय है; इसके परिणामस्वरूप पर्यावरण पर प्रभाव, परमाणु ऊर्जा का विरोध, सस्ती ऊर्जा, गुणवत्तायुक्त, किफायती विद्युत की आपूर्ति, उपभोक्ता के लिए विद्युत की मांग और आपूर्ति के बीच की खाई को कम करने की आवश्यकता है और दूरदराज में जो क्षेत्र ग्रिड से नहीं जुड़े हैं वहां पर विद्युत ऊर्जा पहुंचाने की आवश्यकता है; इन सभी बिंदुओं ने नवीकरणीय ऊर्जा का दोहन करने पर विवश किया है। नवीकरणीय ऊर्जा में पनबिजली ऊर्जा, पवन ऊर्जा, सौर-ऊर्जा, भू-तापीय ऊर्जा, ज्वार-भाटा ऊर्जा, समूद्री ऊर्जा जिसमें उच्च पनबिजली प्रणाली को परंपरागत ऊर्जा के रूप में वर्गीकृत किया गया है। भारत में पवन ऊर्जा और सौर ऊर्जा का अधिक से अधिक व्यवहार्य और संभव दोहन आर्थिक रूप से प्राप्त करना भारत का उद्देशय है। भारत के कई राज्यों में विशेष रूप से तिमलनाडु, गुजरात, कर्नाटक, आंध्र प्रदेश और कई अन्य राज्यों में पवन ऊर्जा की क्षमता अच्छी है। भारत की गर्म जलवायु सौर ऊर्जा की अधिक संभावना, विशेष रूप से गुजरात और कई राज्यों में प्रदान करती है, जिसका कई राज्य अनुसरण कर रहे हैं। इस लेख / शोधपत्र में तिमलनाडु राज्य में पवन ऊर्जा की प्रासंगिकता के विषय पर चर्चा की गई है।

मुख्य विशेष शब्दः (KEYWORDS)

SCIG - गिलहरीनुमा पिँजरेनुमा इंडक्शन जनरेटर ; WRIG – घावनुमा रोटर इंडक्शन जनरेटर ; DFIG - दोगुना फेड इंडक्शन जनरेटर

1. परिचय

तमिलनाडु राज्य में सदैव ही अधिक ऊर्जा प्राप्त करने की भूख रही है क्योंकि यहाँ पर अच्छी सिंचाई युक्त कृषि भूमि है, अधिक मात्रा में भारी उद्योगों की उपस्थिति विशेष रूप से ऑटोमोबाइल उद्योग, कपड़ा उद्योग, सीमेंट उद्योग, अभियांत्रिकी और ऊर्जा गहन बिद्युत द्रुतशीतन संयंत्र और विद्युत का घरेलू क्षेत्र में अधिक उपभोग आदि। तमिळनाडु राज्य में पनबिजली, थर्मल, परमाणु और पवन ऊर्जा के मिश्रित संसाधन उपलब्ध हैं। इस राज्य ने पनबिजली स्टेशनों का प्रबंध किया है, इसके अपने कोयला आधारित थर्मल पावर स्टेशन हैं जो कि अन्य राज्यों और विदेशों से आयातित कोयले पर निर्भर हैं: थर्मल स्टेशन हैं जो केंद्र सरकार और राज्य सरकार द्वारा संयुक्त क्षेत्र के स्वामित्व में कार्य करते हैं; विद्युत की अधिक आवश्यकता के समय निजी प्रचालकों द्वारा थर्मल स्टेशन, गैस टरबाइन और नॉप्था स्टेशनों का प्रबंधन किया जाता है। कलपक्कम और कूदनकुळम परमाणु ऊर्जा केंद्र, केंद्रीय क्षेत्रों के स्वामित्व वाले स्टेशन हैं; कन्याकुमारी, तिरुनेलवेली, तिरुपूर और कोयम्बटूर जिले में अधिकतर पवन ऊर्जा टरबाइन स्टेशनों का और उभरते सौर ऊर्जा पीवी स्टेशनों का स्वामित्व निजी मालिकों के पास है। कैप्टिव विद्युत संयंत्र और बॉयोमॉस स्टेशन राज्य की ऊर्जा की आवश्यकताओं में भी योगदान दे रहे हैं। राज्य में एक 400 मेगावॉट का पंप भंडारण संयंत्र है और एक संयंत्र नीलगिरी जिले में स्थापित करने की योजना विचाराधीन है। राज्य के अपने संसाधन अपर्याप्त हैं और इसके लिए वह अपना अंश केंद्र के अन्य दक्षिणी राज्यों के स्टेशनों से आयात करता है जिनमें उसका अपना अंश भी है जैसे कि कैगा परमाणु स्टेशन, रामगुंडम थर्मल स्टेशन आदि।

तमिलनाडु राज्य में 400 किलोवॉट, 230 किलोवॉट और 110 किलोवॉट की लाइनों और उपस्टेशनों के साथ मिलकर एक व्यापक ग्रिड तैयार किया गया है जो

कि संचार नेटवर्क द्वारा समर्थित है जिसमें विद्युत लाइन वाहक संचार (PLCC) और फाइबर ऑप्टिक नेटवर्क और पर्यवेक्षी नियंत्रण और आंकड़ा अधिग्रहण (स्काडा) के साथ समर्थित है। पवन ऊर्जा और सौर ऊर्जा का दोहन करने के लिए एक महत्वाकांक्षी योजना है जिसमें भवनों की छत के ऊपर बड़े पवन ऊर्जा टरबाइन क्षेत्रों की स्थापना करते हुए उन्हें ग्रिड से जोड़ा जाएगा, यह कार्य धीमे-धीमे गित पकड़ रहा है। पंप भंडारण प्रणाली को सुचारू रूप से व्यवस्थित करने के लिए पवन ऊर्जा और सौर ऊर्जा में बदलाव करते हुए इसका उपयोग किया जा सकता है; यदि कभी अधिकता हो तो पंप पद्धित से और यदि कभी अभाव हो तो जनरेटर पद्धित से प्रचालन किया जा सकता है।

तालिका 1 में वर्ष 2014 की अवधि में स्थापित क्षमता और अधिकतम भार किस सीमा तक पहुंच गया था यह दर्शाया गया है।

तालिका 2 में वर्ष 2014 की अवधि में राज्य में ऊर्जा उपभोग के आंकड़े और पवन ऊर्जा स्रोतों से योगदान दर्शाया गया है जो कि [1,2] में एकत्र किए गए आंकड़ों के आधार पर की गई गणना से पता चलता है।

तालिका 3 में दिनांक 20-06-2014 को यथास्थित दक्षिणी ग्रिड के लिए बिद्युत आपूर्ति की स्थिति [2] में दर्शाए आंकड़ों के अनुसार है। दक्षिणी क्षेत्रीय ग्रिड में दृढ़ अनुशासन के अनुपालन के फलस्वरूप, आवृत्ति लगभग 50 हर्ट्ज है और जब भी कभी आवृत्ति का स्तर कम हो जाता विद्युत की आवृत्ति के स्तर को एक समान बनाए रखने के लिए विद्युत कटोती का सहारा लिया जाता है। तालिका 1, तालिका 2 और तालिका 3 में दर्शाए गए आंकड़ों का निष्कर्ष निम्नलिखित रूप में प्रस्तुत किया गया है।

तमिळनाडु राज्य में अधिक विद्युत भार के समय में, पवन ऊर्जा का योगदान दिनांक 20/06/2014 को यथास्थिति 3520/13288 = 26.49% था। जनवरी, फरवरी, मार्च, अप्रैल, अक्टूबर, नवम्बर, दिसम्बर 2014 के महीनों में पवन ऊर्जा की

तालिका - 1 तमिळ्नाडु राज्य की उच्च क्षमता की दिनांक 20/06/ 2014 को यथास्थिति

क्रम संख्या	विवरण	क्षमता (मेगावॉट)	उच्च क्षमता (मेगावॉट) यथास्थिति दिनांक 20/06/ 2014
1	तमिळ्नाडु विद्युत राज्य बोर्ड		
	(i) पनबिजली (हाइड्रो)	2284	794
	(ii)थर्मल	4060	2785
	(iii)गैस	516	184
2	स्वतंत्र विद्युत संयत्र		
	(i)अधिक लागत	542.16	907
	ii)कम लागत	416	
3	कैप्टिव विद्युत संयत्र (सीपीपी)		
	(i)सीपीपी (प्रत्यक्ष)	63.5	0
	(ii)सीपीपी (क्रय)	970	779
	(iii)सीपीपी (अन्य)	910	293
	गैर परम्परागत ऊर्जा योजना		tentralistramente per la protesta de la
	(iv)सहकारिता उत्पादित	659.4	88
	(v)बॉयोमॉस	215.4	14

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई की समाचार पत्रिका 🕻 🖫 📧

क्रम संख्या	विवरण	क्षमता (मेगावॉट)	उच्च क्षमता (मेगावॉट) यथास्थिति दिनांक 20/06/ 2014
4	तमिळ्नाडु विद्युत राज्य बोर्ड पवन	17.465	3520
	निजी पवन		7327. 44
5	केंद्रीय उत्पादक स्टेशन		
	(क) नैवेली टीएसआई	475	180
	(ख)क्षमता	तमिळ्नाडु	3056
		विद्युत राज्य	
		बोर्ड का अंश	
	(i)एनटीसीसी (2600+2000)	910	
	(ii)नैवेली टीएस 2 (1470)	480	
	(iii) नैवेली टीएस 1 एक्स्पेन (420)	226	
	(iv)तलचर (2000)	498	
	(v)एम ए पी एस (440)	332	
	(vi) के ए पी एस (800)	234	
	(vii) वैलूर (1000)	715	
	(viii) कुदनकुळम (1000)	562	
6	बाह्य सहायता		28
7	विद्युत क्रय		661
	कुल (मेगावॉट)		13288
	ऊर्जा उपभोग एक दिन में (एम यू)	293.969	

तालिका – 2 तमिळ्नाडु राज्य का पवन ऊर्जा का अंशदान वर्ष 2014

विभ अभा मि अस्ति। वच 2014						
माह	उत्पादित पवन ऊर्जा	ग्रिड उपभोग (MU)	पवन ऊर्जा उत्पादन का प्रतिशत			
जनवरी-14	275.458	7577.464	3.64			
फरबरी-14	205.932	7047.516	2.92			
मार्च-14	295.746	8117.778	3.64			
अप्रेल-14	253.947	8167.487	3.11			
मई-14	837.215	8146.216	10.28			
जून-14	2044.734	8350.859	24.49			
जूलाई-14	2116.637	8496.98	24.91			
अगस्त-14	1522.584	7994.671	19.04			
सितबंर-14	1223.588	7912.56	15.46			
अक्तूबर-14	289.882	7168.008	4.04			
नवबंर-14	149.323	6868.937	2.17			
दिसबंर-14	183.011	7163.51	2.55			
कुल योग	9398.057	93011.99	10.10			

तालिका - 3 दक्षिणी ग्रिड विद्युत की यथास्थिति दिनांक 20/06/2014 को

राज्य	थर्मल	हाइड्रो	गैस / नपथा	पवन ऊर्जा	अन्य	एनईटी एससीएच	आहरण	उपलब्धता	माँग	कमी
			डीज़ल			(ग्रिड से)	(ग्रिड से)			
आंध्र प्रदेश	77.77	3.12	20.03	31.05	0.16	17.6	20.3	129.73	132.43	14.81
तेलंगाना	42.47	0.0	0.0	0.0	7.03	69.69	69.47	119.19	118.97	4.4
कर्नाटक	39.17	27.88	19.17	29.32	16.94	29.71	31.79	162.19	164.27	9.24
केरल	0.0	15.77	3.8	0.5	0.27	32.71	34.68	53.05	55.02	0.58
तमिळ्नाडु	79.22	5.42	17.72	78.73	28.94	84.48	84.88	294.51	294.91	0.3
पुदुच्चेरी	0.0	0.0	0.0	0.0	0.0	0.0	7.16	7.16	7.10	0.01
कुल योग	238.63	52.19	60.72	119.6	53.34	241.35	248.22	765.83	772.7	29.34

हिस्सेदारी 5% से कम थी और मई, जून, जुलाई, अगस्त, सितम्बर 2014 के महीनों में पवन ऊर्जा की हिस्सेदारी 10% से अधिक थी। पवन ऊर्जा का औसत योगदान 10.10% है और पवन ऊर्जा 9398 एमयू है। यह देखा जा सकता है कि मई-सितम्बर 2014 के महीने में पवन ऊर्जा संयंत्रों ने आधार लोड स्टेशनों के रूप में कार्य किया है (पवन ऊर्जा का प्रति मिनट पाठ्यक्रम में योगदान)।

तमिलनाडु राज्य की कार्यप्रणाली का यह प्रभाव दक्षिणी क्षेत्र में पवन ऊर्जा की दिनांक 20/06/2014 को यथास्थिति तक 119.6 / 772.7 = 15.47% के योगदान से भी देखा जा सकता है। फलतः योगदान देने वाला तमिलनाडु प्रमुख राज्य है (78.73 / 772.7 = 10.18%) और कर्नाटक (29.32 / 772.7 = 3.78%) एवम आंध्र प्रदेश (11.05 / 772.7 = 1.43%) राज्य उसके पश्चात के स्थान पर आते हैं।

2. विद्युत गुणवत्ता विषय

अ. पवन ऊर्जा का प्रभाव

विद्युत ऊर्जा व्यवस्था में पवन ऊर्जा का प्रभाव निम्नलिखित विषयों पर निर्भर करता है:

• पवन ऊर्जा प्रवेश स्तर

- ग्रिड आकार
- विद्युत प्रणाली में मिश्रित उत्पादन

व विद्युत्त प्रवासी सामावत उत्पादः

5% से कम की पैठ - ग्रिड प्रचालक के लिए एक विषय नहीं है।

10% से अधिक की पैठ – ग्रिड अनुकूलन और उपचारात्मक उपाय करने की आवश्यकता है।

20% से अधिक की पैठ – वर्तमान ग्रिड को सुदृढ़ीकरण करना आवश्यक हो जाता है।

पवन ऊर्जा की पैठ पहले ही तिमलनाडु राज्य में 24% और दक्षिणी ग्रिड में 15% हो गई है और भविष्य में इस पवन ऊर्जा पैठ में वृद्धि होने की संभावना अधिक है। विद्युत की गुणवत्ता सुनिश्चित करने हेतु आवश्यक उपाय किए जा रहे हैं। वर्तमान में,तिमलनाडु राज्य में पवन ऊर्जा जनरेटरस अधिकतर जनरेटर इंडक्शन प्रकार के प्रयोग में लाए जाते हैं जबिक डबली फेड इंडक्शन जनरेटर (DFIG) और स्थायी चुंबक तुल्यकालिक जनरेटर (PMSGs) भी उपलब्ध हैं। इस लेख/शोधपत्र में विद्युत गुणवत्ता (PQ) और मिटिगेशन तकनीक से जुड़े विषयों पर चर्चा कि गई है। निम्नलिखित विषयों में यह दर्शाया गया है कि विभिन्न प्रकार के पवन ऊर्जा संयंत्रों के प्रकार (WPP) और किस प्रकार ये विद्युत गुणवत्ता में लचीली एसी ट्रांसिमशन प्रणाली (FACTS) उपकरणों और भंडारण पद्धित में अपना योगदान देते हैं।

'पवन' - 44वां अंक जनवरी – मार्च 2015

(आ). पवन ऊर्जा संयंत्रों के वर्गीकरण (WPPs)

क. स्थिर गति के पवन ऊर्जा संयंत्र (Constant WPPs)

टाइप-ए - SCIG, बिद्युत ग्रिड से एक नरम पद्धति के माध्यम से सीधा जुड़ा हुआ होता है।

टाइप-बी - WRIG, स्टेटर ग्रिड से सीधा जुड़ा हुआ होता है। रोटॉर में तांबे की घुमावदार बाह्य परिवर्तनीय रीसिस्टर्स से जुड़ी हुई होती हैं।

ख. परिवर्तनीय गति के पवन ऊर्जा संयंत्र (Variable Speed WPPs)

टाइप-सी - DFIG, स्टेटर ग्रिड से सीधा जुड़ा हुआ होता है। रोटॉर भी विद्युत इलेक्ट्रॉनिक नियंत्रण उपकरणों (पीईसी) के माध्यम से ग्रिड से जुड़ा हुआ होता है। टाइप-डी - ये आठ प्रकार के होते हैं।

- (I) टाइप-डी परिवर्तनीय गति SCIG के साथ गियरयुक्त WPP और पूर्ण दर के PFC
- (ii) टाइप-डी परिवर्तनीय गति SCIG के साथ गियरयुक्त WRSG और पूर्ण दर के PEC
- (iii) टाइप-डी हाइड्रो डॉईनोमिकली परिवर्तनीय गति WPP और स्थिर गति के WRIG
- (iv) टाइप-डी परिवर्तनीय गति SCIG के साथ गियरयुक्त PMSG और पूर्ण दर के PFC
- (v) टाइप-डी हाइड्रो डॉईनोमिकली परिवर्तनीय गति WPP और स्थिर गति के PMSG
- (vi) टाइप-डी परिवर्तनीय गति के साथ प्रत्यक्ष ड्राइव WPP और पूर्ण दर के PEC
- (vii) टाइप-डी परिवर्तनीय गति के साथ प्रत्यक्ष ड्राइव PMSG और पूर्ण दर के PEC
- (viii) टाइप-डी परिवर्तनीय गति के साथ उच्च वर्ण संकर (सेमी गियर्ड) PMSG और पूर्ण दर के PEC

(ई). पवन ऊर्जा संयंत्रों के लक्षण और उनकी सीमाएं (WPPs)

1. स्थिर गति के पवन ऊर्जा संयंत्र (Constant Speed WPPs)

लक्षण:

पवन ऊर्जा संयंत्र, सरल इनडक्शन जनरेटर होते हैं और सुगमता से उपलब्ध हो जाते हैं। इनके लक्षण उत्कृष्ट, विद्युत और यांत्रिकीय होते हैं। इनकी खोजने की समस्या नहीं होती। ये विद्युत ऊर्जा स्टेशन के शॉर्ट सर्किट में कमी लाते हैं, ये पवन ऊर्जा गस्टस को अवशोषित करने में सहायता करते हैं, ये ग्रिड की असामान्यताओं के लिए कम संवेदनशील होते हैं, इनके नियंत्रण सरल होते हैं और इनका आकार एक तुल्यकालिक जनरेटर (synchronous generator) के दसवें अंश के समान होता है।

सीमाएं:

- पवन ऊर्जा संयंत्र SCIGs और WRIGs प्रतिक्रियाशील ऊर्जा उपभोग में लाते हैं क्योंकि इनमें ग्रिड से स्टेटर वॉईनर्डिंग के माध्यम से चुम्बकीत्व विद्युत की आपूर्ति होती है, जिसमें कम ऊर्जा एक कारण से होती है और क्षतिपूर्ति वाले उपकरणों के प्रयोग की आवश्यकता होती है।
- 2. पवन ऊर्जा संयंत्र शक्तिशाली ग्रिड में अधिक सफल होते हैं।
- 3. पवन ऊर्जा संयंत्र प्रायः दोषरहित गुणवाले (FRT)होते हैं।
- 4. पवन ऊर्जा संयंत्र, वोल्टेज या आवृत्ति नियंत्रण प्रदान नहीं करते क्योंकि इनमें गति नियंत्रण का दायरा संकीर्ण होता है।

2. परिवर्तनीय गति के पवन ऊर्जा संयंत्र (Variable Speed WPPs)

ऊर्जा का वार्षिक उत्पाद अधिक करने हेतु आवश्यक है कि पवन ऊर्जा संयंत्र पवन ऊर्जा गति सीमा से अधिक ऊर्जा उत्पन्न करे। इसके अतिरिक्त, यह भी वांछनीय है कि पवन ऊर्जा संयंत्र से सक्रिय और प्रतिक्रियाशील शक्ति को नियंत्रित किया जाए, यह तभी संभव है जब विद्युत जनरेटरों का उपयोग ऊर्जा इलेक्ट्रॉनिक नियंत्रकों के द्वारा विभिन्न प्रकार के परिवर्तनीय गति के पवन ऊर्जा संयंत्रों की खोज की जाए।

गति परिवर्तनशीलता के आधार पर, दो प्रमुख श्रेणियों की परिवर्तनीय गति, संयंत्रों के रूप में निम्नानुसार हैं:

- (क) टाइप-सी पवन ऊर्जा संयंत्र (WPP) एक सीमित परिवर्तनीय गति हेत्।
- (ख)टाइप-डी पवन ऊर्जा संयंत्र (WPP) एक विस्तृत श्रृंखला परिवर्तनीय गति हेतु।

ग्रिड की यांत्रिकी रोटॉर गति और विद्युत आवृत्ति को परिवर्तनीय गति प्रचालन हेतु पुनः खोलने की आवश्यकता होती है। विभिन्न टोपोलोजी परिवर्तनीय गति संयंत्रों के लिए उपलब्ध होती है।

पवन गति से परिवर्तनशील प्रकृति के कारण ग्रिड प्रचालन पर प्रभाव

पवन गित से परिवर्तनशील प्रकृति के कारण ग्रिड प्रचालन पर प्रायः कुछ असंतुलन प्रभाव पड़ता है जिसके कारण प्रायःविद्युत गुणवत्ता में गिरावट आ जाती है। ऊर्जा प्रणाली की स्थिरता को पवन ऊर्जा संयंत्र (WPPs) के कारण कोई खतरा नहीं होता है।

एकल पवन ऊर्जा संयंत्र (WPPs): इस पवन ऊर्जा संयंत्र में उसके टर्मिनल वोल्टेज में तेजी, स्वायत्तता और आत्म सुरक्षा की शक्ति है तथा ये ग्रिड वोल्टेज के समय पर तेजी से और उचित ढंग से प्रतिक्रिया करते हैं।

पवन ऊर्जा टरबाइन क्षेत्र: पवन ऊर्जा टरबाइन क्षेत्र प्रबंधन प्रणाली (WFMS) और पवन ऊर्जा प्रबंधन सॉफ्टवेयर / SCADA निष्पादन की आवश्यकताओं पर नियंत्रण प्रदान करता है, अर्थात पीसीसी में वोल्टेज विनियमन देता है जो कि:

- एकल पवन ऊर्जा संयंत्र के लिए ऊर्जा आदेश भेजने हेतु प्रतिक्रियाशील होता है।
- अन्य उपस्टेशन उपकरण के साथ समन्वय करते हैं (जैसे शंट केपेसीटॉर)
- SCADA की उपयोगिता के साथ अंतराफलक (इंटरफ़ेस)
- उपयोगिता प्रणाली प्रचालन को स्वीकारना (वोल्टेज के संदर्भ में विशेष बिंदु)

विद्युत गुणवत्ता

स्थिर गित के पवन ऊर्जा संयंत्र से चक्रीय विद्युत गुणवत्ता की ग्रिड नेटवर्क पर यदि सीमा का उल्लंघन किया जा रहा है तो सुधार की आवश्यकता पड़ती है। परिवर्तनीय गित के पवन ऊर्जा संयंत्र नियमित ऊर्जा की गुणवत्ता उत्पादन करते हैं। अनेक परिवर्तनीय ग्रिड नेटवर्क में नहीं पहुँचते हैं, अपितु पवन ऊर्जा टरबाइन रोटॉर या पीईसी की फलाईव्हील प्रक्रिया से सुगमतापूर्वक बाहर आ जाते हैं।

इसका एक वैकल्पिक रूप है कि पवन ऊर्जा संयंत्र को एकीकृत ऊर्जा के रूप में प्रचालन हेतु उपयोग करते हुए अन्य नवीकरणीय ऊर्जा स्रोतों के साथ, पारंपरिक ऊर्जा स्रोतों और / या भंडारण तत्वों (पवन-डीजल, पवन-एसपीवी-डीजल और पवन पंप संचालित भंडारण प्रणाली) का प्रयोग किया जाए। एक स्थायी ऊर्जा प्रणाली का उत्पादन उचित डिजाइन द्वारा प्राप्त किया जा सकता है। ग्रिड से जुड़ा हुआ और स्टैंडअलोन माध्यम भी एक विकल्प के रूप में प्रयोग किया जा सकता है।

पवन ऊर्जा संयंत्र (WPPs) के कारण ग्रिड ऊर्जा गुणवत्ता एक सिंहावलोकन

गुणवत्ता के विषय में पवन ऊर्जा को स्थानीय और प्रणाली व्यापक प्रभाव के रूप में विभाजित किया जा सकता है [3-14]। स्थानीय और प्रणाली व्यापक विषय विभिन्न पवन ऊर्जा संयंत्रों के समय कैसा प्रभाव डालते हैं यह तालिका 4 और 5 में दर्शाया गया है।

1. स्थानीय प्रभाव

तालिका – 4 पवन विद्युत और शमन पर स्थानीय प्रभाव – सिंहावलोकन

क्र.सं.	स्थानीय प्रभाव	टाइप-ए और टाइप-बी पवन ऊर्जा संयंत्र (WPP)	टाइप-सी पवन ऊर्जा संयंत्र (WPP)	टाइप-डी पवन ऊर्जा संयंत्र (WPP)
1.	मुख्य वोलटेज़ और उपखंड प्रवाह में परिवर्तन	इसमे यह होता है, परंतु क्षतिपूर्ति, परंतु केपीसेटर बैंक के साथ संभव है SVCS / STATCOMs	क्षतिपूर्ति संभव है, परंतु पीईसी के दर-निर्धारण के आधार पर।	क्षतिपूर्ति संभव है परंतु पीईसी के दर-निर्धारण के आधार पर।
2.	दोषयुक्त विद्युत और सुरक्षा कवच प्रणाली	परम्परागत सुरक्षा प्रणाली और यांत्रीकीय तोर्के लिमिटर्स पद्धति से सुरक्षा कवच संभव है	सुरक्षा कवच पीअईसी की सीमा तक संभव है उसके तुरंत पश्चात हटा दिया जाए ।	सुरक्षा कवच पीअईसी की सीमा तक संभव है उसके तुरंत पश्चात हटा दिया जाए ।
		विद्युत गुणवत्ता		
3(雨)	धीमा वॉलटेज विविधताएं (स्थिर स्थिति में)	उपस्थित है परंतु परेशानी नहीं	महत्वहीन क्योंकि पीईसी रॉटर सरक्यूटस में बफर ऊर्जा के रूप कार्य करती है।	महत्वहीन क्योंकि पीईसी स्टेटर अवस्था में ग्रिड के जनरेटर से खुल जाती है।
(ख)	तीव्र वॉलटेज (झिलमिलाहट) (स्थिर स्थिति में)	उपस्थित हो सकता है विशेषतः कमज़ोर ग्रिड में	महत्वहीन क्योंकि पीईसी रॉटर सरक्यूटस में बफर ऊर्जा के रूप कार्य करती है।	महत्वहीन क्योंकि पीईसी स्टेटर अवस्था में ग्रिड के जनरेटर से खुल जाती है।
(ग)	ट्राँन्सिएंट्स	उपस्थित	एक सीमा तक उपस्थित	एक सीमा तक उपस्थित
(ঘ)	हारमोनिक्स	अनुपस्थित	आधुनिक पवन ऊर्जा संयंत्रों (WPPs) में अनुपस्थित	आधुनिक पवन ऊर्जा संयंत्रों (WPPs) में अनुपस्थित

2. प्रणाली के व्यापक प्रभाव

तालिका - 5 पवन विद्युत और शमन पर प्रणाली का व्यापक प्रभाव - सिंहावलोकन

	तालिका – ५ पर्यम प्ययुत्त और रामम पर प्रणाला का व्यापक प्रमाय – सिहायलाकम							
क्र.सं.	क्षमताएं	टाइप-ए पवन ऊर्जा संयंत्र (WPP)	टाइप-बी पवन ऊर्जा संयंत्र (WPP)	टाइप-सी पवन ऊर्जा संयंत्र (WPP)	टाइप-डी पवन ऊर्जा संयंत्र (WPP)			
1	प्रतिक्रियाशील विद्युत क्षतिपूर्ति और वोलटेज़ नियंत्रण	शंट केपीसेटर के साथ संभव, SVC / STATCOM/DVR	शंट केपीसेटर के साथ संभव, SVC / STATCOM/DVR	पीईसी के साथ संभव है	पीईसी के साथ संभव है			
2	लघु अवधि संतुलन विद्युत नियंत्रण और आवृत्ति	बलेड पिचिंग और पवन ऊर्जा संयंत्र (WPPs) को अंदर और बाहर स्विच करते हुए।	बलेड पिचिंग और पवन ऊर्जा संयंत्र (WPPs) को अंदर और बाहर स्विच करते हुए परंतु कुछ अच्छा है।	बलेड पिचिंग और / या पीईसी नियंत्रण और पवन ऊर्जा संयंत्र (WPPs) को अंदर और बाहर स्विच करते हुए।	बलेड पिचिंग और / या पीईसी नियंत्रण और पवन ऊर्जा संयंत्र (WPPs) को अंदर और बाहर स्विच करते हुए।			
3	दीर्घ अवधि संतुलन आऊटपुट विद्युत उपलब्धता	एक सीमा तक संभव पवन के स्टोकेस्टिक स्वभाव के कारण।		एक सीमा तक संभव पवन के स्टोकेस्टिक स्वभाव के कारण।	एक सीमा तक संभव पवन के स्टोकेस्टिक स्वभाव के कारण।			
4	दोषयुक्त विद्युत के लिए योगदान	एक सीमा तक	एक सीमा तक	पीईसी की थर्मल सीमा के पश्चात कठिनाई, क्योंकि यह क्षति पहुँचा सकता है।	पीईसी की थर्मल सीमा के पश्चात कठिनाई, क्योंकि यह क्षति पहुँचा सकता है।			
5	दोषयुक्त राईड के माध्य (FRT) से क्षमता	पवन की गति, दोष की अवध, ग्रिड की शक्तिऔर वोलटेज की अस्थिरता अतः जोखिम रहता है।	पवन की गति, दोष की अवध, ग्रिड की शक्तिऔर वोलटेज की अस्थिरता अतः जोखिम रहता है।	पीईसी की थर्मल सीमा के पश्चात कठिनाई, क्योंकि यह क्षति पहुँचा सकता है।	पीईसी की थर्मल सीमा के पश्चात कठिनाई, क्योंकि यह क्षति पहुँचा सकता है।			

'पवन' - 44वां अंक जनवरी – मार्च 2015

पृथक करना / द्वीप (Islanding)

एक ग्रिड का एक वर्ग यदि बाकी हिस्सों से अलग-थलग है, तो इसे पृथक किया हुआ या द्वीप (आईसोलेटिड या ईज़लेनडिड) कहते हैं, और यदि यहाँ पर पवन ऊर्जा संयंत्र (WPPs) / पवन ऊर्जा टरबाइन क्षेत्र ऊर्जा के स्रोत के क्षेत्र रूप में कार्य करते हैं तो यहाँ की प्रक्रिया को ईज़लेनिंडिंग कहते हैं। ऐसी स्थिति में प्रणाली का वोल्टेज अधिक या कम हो जाता है जो कि पवन ऊर्जा संयंत्रों के (WPPs) रिएक्टिव विद्युत उत्पाद और उपभोगिता में असंतुलन उत्पन्न करता है।

द्वीप/पृथक करने (ईज़लेनर्डिंग) से निम्न समस्याएं होती हैं:

- वोल्टेज की समस्या संभव है क्योंकि कम प्रतिक्रियाशील आरक्षित ईज़लेनडिड नेटवर्क होता है।
- पवन ऊर्जा संयंत्र (WPPs) में विद्युत की कमी होती है क्योंकि कम वोल्टेज हो जाती है जिससे स्थिति कॉफी खराब हो जाती है।
- आवृत्ति तीव्र गति से नीचे गिरती है जिसके परिणामस्वरूप तेजी से विद्युत में वृद्धि और कमी आ जाती है।
- ু कुल उत्पादन स्थाई रहता है। (सॉइनोक्रोनस + पवन ऊर्जा)

पवन ऊर्जा संयंत्र (WPPs) में विद्युत की सुरक्षा और ग्रिड

प्रत्येक पवन ऊर्जा संयंत्र (WPPs) में कुछ आधारभूत विद्युत सुरक्षात्मक प्रावधानों का ससज्जित होना अनिवार्य है और कुछ महत्वपूर्ण विशेषताएं प्रणाली में व्यापक प्रभाव का पता करने के लिए दोहराई गई हैं। उनमें से कुछ निम्नवत हैं:

- पवन ऊर्जा संयंत्र (WPPs) / पवन ऊर्जा टरबाइन क्षेत्र सक्रिय विद्युत नियंत्रण।
- अधिक आवृत्ति
- आवृत्ति के अंतर्गत
- अधिक वोलटेज
- वोलटेज के अंतर्गत
- साधन की हानि
- अधिक उच्च विद्युत हाई शॉर्ट सर्किट
- ग्रिड में दोष के समय स्थिरता के लिए तटस्थ वोल्टेज विस्थापन
- थर्मल अधिभार
- बड़े पवन ऊर्जा संयंत्र / पवन ऊर्जा टरबाइन क्षेत्र में स्वयं बंद होना आवश्यक।
- उपर्युक्त, सभी प्रचालनों में रिमोट नियंत्रण की सुविधा।

निष्कर्ष

पवन ऊर्जा ने ऊर्जा के क्षेत्र में अपनी पैठ बना ली है जिसका मुख्य कारण उनके स्वच्छक, प्रचुरता , सस्ता और वितरण प्रकृति एवं आडिओसॉइनक्रासिएस जीवाश्म तथा परमाणु ऊर्जा के स्रोत हैं। यद्यपि वे समय-समय पर अलग प्रकृति के होते हैं,जिसका प्रभाव उपभोक्ता को ऊर्जा की आपूर्ति और विद्युत की गुणवत्ता में प्रतिबिंबित कर सकता है। तमिलनाडु राज्य और दक्षिणी क्षेत्र में पवन ऊर्जा की पैठ की परख की जा रही है। विद्युत गुणवत्ता संबंधी विषयों को संबोधित किया जाना

आवश्यक है। स्थिर गति के पवन ऊर्जा संयंत्रों की अपनी ही सीमाएं हैं और पवन ऊर्जा संयंत्रों WPPs) और FACTS उपकरणों की गुणवत्ता के विषयों को संबोधित किया जाना आवश्यक है। भंडारण तकनीक जैसे कि पंप भंडारण, और अन्य कारगर साधन और इज़लेंडिड प्रचालन ग्रिड की, आपात स्थिति में, विद्युत गुणवत्ता संबंधी विषयों में योगदान दिया जा सकता है। पवन ऊर्जा को निरंतर विद्युत आपूर्ति हेत् सौर ऊर्जा पीवी और डीजल जनरेटर आदि, अन्य स्रोतों के साथ जोड़ा जा सकता है।

संदर्भ - शोध ग्रंथ

- 1. TNEBLDC: दैनिक रिपोर्ट; www.tnebldc.org/ रिपोर्ट / lds.xls
- क्षेत्रीय लोड डिस्पैच दैनिक 2. दक्षिणी केंद्र: रिपोर्ट: www.srldc.org/dailyreport.aspx
- 3. हयोंग सिक किम, डायलन दाह-चुआन लू, "विंड एनर्जी कनवर्सन सिस्टम फ्रॉम इलेक्ट्रीकल परसपेकटिव - ए सर्वे" इंटरनेशनल जर्नल ऑफ स्मार्ट ग्रिड और रिनुवल एनर्जी, Vol.1, pp.119-131, 2010।
- 4. एम टिसली और एस पपाथनएसिइओ, "ए रिव्यू ऑफ ग्रिड कोड टेकनीकल रिकवायर्मेंट फॉर विंड फॉर्मस", आईईटी रिनुवल पॉवर जनरेशन, वॉल्यूम। 3, अंक 3, पीपी 308- 332, 2009, डीओआई:10.1049 / आईईटीrpg.2008.0070
- 5. ग्लोबल विंड एनर्जी कॉऊनसिल ऑउटलुक 2014, http://www. gwec.net/wp - content / uploads /2014 /10/GWEO2014_WEB.pdf
- 6. जोशुआ एरनेस्ट और टॉर वेज़ेलिउस, "विंड पॉवर पलॉंट और प्रोजेक्ट डेवलोप्मेंट", पीएचआई लर्निंग प्राइवेट लिमिटेड, नई दिल्ली, 2011।
- 7. जोश्आ एरनेस्ट, "विंड पॉवर टेकनोलोजी", पीएचआई लर्निंग प्राइवेट लिमिटेड, नई दिल्ली, 2014।
- 8. बिन वू, योंग कियान्ग लैंग, नाविद ज़रगारी और समीर कौरो, 'पॉवर कनवरसन और कंट्रोल ऑफ़ विंड एनर्जी सिस्टम' विले, आईईईई प्रेस, 2011।
- 9. एलेकट्टीकल इंडिया, ए चारी पब्लिकेशन, Vol.52, No.12, दिसंबर 2012।
- 10. आईईसी 61400-21: विंड टरबाइन जेनरेटिग सिस्टम, भाग 21, मेज़रमेंट और असैसमेंट ऑफ पॉवर कवालटी करेकटस्टीक ऑफ ग्रिड कनकटिड विंड
- 11. आईईसी 61400-13: विंड टरबाइन मेज़रिंग प्रोज़ीर इन डिटरमाइनिंग दि पॉवर बिहेविअर।
- 12. आईईसी 61400-3-7: असैसमेंट ऑफ एमीशन लिमिट फ्लकटुएटिंग लोड।
- 13. आईईसी 61400-12: विंड टरबाइन परफॉरमेंस।
- 14. ए डी तिरूमूर्ति और डॉ सी चेलामृत्थ्, "सटडी ऑन पॉवर कवालटी इश्ज़ इन ग्रिड कनकटिड विंड टरबाइन फार्मस एंड देयर रेमिडियल मेज़रस", परियोजना। सं आरडी - आरडी-190-10, सीवेट, चेन्नई, मार्च 2014।
- 15. आईईईई एपलीकेशन गाईड फॉर आईईईई स्टैंडर्ड 1547, आईईईई स्टेनडर्ड फ़ॉर इनटारकॉनकटिंग डिसट्टीब्यूटिड रिसोर्सिस विद इलेक्ट्रिक पावर सिस्टम्स।

पकाशन

राष्ट्रीय पवन ऊर्जा संस्थान (रा.प.ऊ.स.)

भारत सरकार के नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) का स्वायत्त अनुसंधान एवं विकास संस्थान । वेलचेरी-ताम्बरम प्रमुख मार्ग, पल्लिकरणे, चेन्नई - 600 100

दूरभाष : +91-44-2900 1162 / 1167 / 1195 फैक्स : +91-44-2246 3980

इमेल : info.niwe@nic.in वेबसाइट : http://niwe.res.in

नि:शुल्क डाऊनलोड कीजिए पवन के सभी अंक रा.प.ऊ.सं. की वेबसाइट पर उपलब्ध हैं आप नि:शुल्क डाऊनलोड कर सकते हैं http://niwe.res.in