48वां अंक जनवरी – मार्च 2016

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई की समाचार पत्रिका 'पवत'

नीवे NIWE

http://niwe.res.in

ISO 9001 : 2008

संपादकीय

वर्तमान वित्त वर्ष में, पवन ऊर्जा के क्षेत्र में पुनरुद्धार से अभी तक की उच्चतम, वार्षिक स्थापित क्षमता 3.4 गीगावॉट प्राप्त होना स्वागत योग्य है और पवन ऊर्जा के क्षेत्र में वर्ष 2022 तक भारत के 60 किलोवॉट निर्धारित लक्ष्य तक पहुंचने की दिशा में यह एक अच्छा संकेत है। हमें

आशा है कि आने वाले वर्ष में हम इसे दोगुना कर लेंगे। अपने लक्ष्य तक पहँचने का यह एक उचित मार्ग है। पवन ऊर्जा क्षेत्र को 'लघु पवन ऊर्जा प्रणाली' (SWES) के क्षेत्र में भी जीवंत माना जाता है और इसे सौर-ऊर्जा उच्च वर्ण संकर के साथ भी जोड़ कर देखा जाता है तथा इसका उपयोग छत के ऊपर, दूरसंचार टॉवरों, सुदूर सीमावर्ती क्षेत्रों और पहाड़ी क्षेत्रों में किया जा रहा है। यद्यपि इस दिशा में जागरूकता लाने, लागत में कमी लाने तथा बाज़ार की आनुपातिक दरों में वृद्धि करने की आवश्यकता है क्योंकि जलवायु परिवर्तन के योगदान और शमन प्रयासों पर भी इसका अधिक प्रभाव पड़ता है। पवन ऊर्जा क्षेत्र इस समय पवन ऊर्जा टरबाइन उपकरण निर्माताओं के बाज़ार से भी वंचित ही है, जिनकी संख्या 20 से कुछ ही अधिक है और यह केवल बहु-मेगावॉट क्षेत्र में कार्य कर रहे उत्पादकों के लिए ही सुविधाजनक है; तथापि अंतर्राष्ट्रीय उद्योग-जगत में इस क्षेत्र के लिए उत्साह है और वे भारत के लिये कम पवन व्यवस्था युक्त अत्याधुनिकतम विशिष्ट सुविधायुक्त बहु-मेगावॉट पवन ऊर्जा टरबाइन निर्माण करने में रुचि दिखा रहे हैं। यह उच्च क्षमता युक्त WTG में होता है, और वह 2 से 3 मेगावॉट के समीप है तथा उसके रोटॉर का व्यास बड़ा हो, इस्पात के लम्बे एवं ठोस कॉंक्रीट और उच्च वर्ण संकर युक्त टॉवर हों। भारत में विशिष्ट बहु-मेगावॉट मॉडल का निर्माण करने हेत् अपने मॉडल्स प्रस्तुत करते हुए स्पेन देश की मैसर्स एक्किओना और मैसर्स जी.ई. रिन्युएबल्स कम्पनियाँ, इस क्षेत्र में, भारत में प्रवेश करने हेतु इस वर्ष सामने आई हैं।

हमें आशा है कि बहुप्रतीक्षित पवन ऊर्जा - सौर ऊर्जा उच्च वर्ण संकर पुनरुद्धारीकरण की दरों, प्रथम अपतटीय पवन ऊर्जा क्षेत्र, उप-मेगावॉट निर्माताओं के समर्थन में माइक्रो ग्रिड नीति, अंतर्राज्य विद्युत हस्तांतरण, पवन ऊर्जा का खुला विक्रय, पृथक ऑफ-ग्रिड प्रणाली को उत्साहित करने के अतिरिक्त भारत सरकार इस दिशा में निश्चित रूप से नितियों की शीघ्र घोषणा करेगी। उद्योग जगत की यह भी आशा है कि एकीकृत पवन ऊर्जा टरबाइन क्षेत्रों के लिए पारंपरिक ऊर्जा संयंत्र की तरह संचालन के साथ-साथ ऊर्जा भंडारण प्रणालियों के लिए दरों में वृद्धि की जाएगी। पवन ऊर्जा उद्योग को उपर्युक्त नीतिगत विषयों में अन्य नवीकरणीय ऊर्जा के क्षेत्रों से और भी अधिक आशा है।

LiDAR संरचना संस्थापना की प्रक्रिया में, गुजरात राज्य के लिये आदेश दे दिए गए हैं और कई पर्यावरण स्वीकृतियों और अन्य सीआरजेड स्वीकृति प्रक्रिया का कार्य प्रगति पर है। राष्ट्रीय पवन ऊर्जा संस्थान में WINDCUBE v2 उपकरण की आपूर्ति कर दी गई है और अंशांकन कार्य प्रगति पर है। लघु पवन ऊर्जा टरबाइन क्षेत्र की उन्नति के प्रचार की शृंखला के क्रम में सर्वप्रथम कार्यशाला भुवनेश्वर में आयोजित की गई, जिसमें हितधारकों को नवीन और नवीकरणीय ऊर्जा मंत्रालय की नवीन योजनाओं की व्याख्या और इसके लाभों से अवगत करवाया गया।

तमिलनाडु राज्य के क्षेत्रों में पवन ऊर्जा पूर्वानुमान सेवाएं श्रेष्ठ और सफल रही हैं। वोर्टेक्स-राष्ट्रीय पवन ऊर्जा संस्थान की वास्तविक समय पूर्वानुमान सेवाएं प्रदान करने के सहयोग को शासी-परिषद के द्वारा मान्यता प्रदान की गई है और सभी त्वरा पवन गित राज्यों को एवं अखिल भारतीय स्तर पर सेवा विस्तारण हेतु सिफारिश की गई है। राष्ट्रीय पवन ऊर्जा संस्थान और जर्मनी देश की मैसर्स टीयूवी राईनलैंड के साथ मान्यता प्राप्त प्रमाणीकरण सेवाओं की पूर्वानुमान सेवा और समय-निर्धारण विषय पर अंतर्राष्ट्रीय कार्यशालाओं के संयुक्त प्रस्ताव पर उद्योग जगत के हितधारकों में इसका सशक्त प्रभाव हआ है।

पवन ऊर्जा टरबाइन परीक्षण की 3 मशीनें उपकरण के साथ तैयार की जा रही हैं, इनके कृत्रिम परीक्षण किए जा रहे हैं और त्वरा पवन गति मौसम की प्रतिक्षा की जा रही है।

राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों के द्वारा SLDC (TANGEDCO) और SRPC / SRLDC के साथ LVRT की आवश्यकताओं को अधिक कठोरता के साथ कार्यान्वयनित करने हेत् विभिन्न विषयों पर विचार-विमर्श किया गया क्योंकि CEA द्वारा निर्धारित दिनांक की समय-सीमा समाप्त हो चुकी है, लेकिन पूर्व में पारित व्यावहारिक मुद्दों पर कार्य करना शेष है। कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में अभिनव सूक्ष्म थ्रस्टर संवर्धित पवन ऊर्जा टरबाइन परियोजना और पवन ऊर्जा-सौर ऊर्जा उच्च वर्ण संकर परियोजनाओं के कार्य प्रगति पर हैं। दिनांक 18 मार्च 2016 को संस्थान के स्थापना दिवस के अवसर पर 2 पाठ्यक्रम, एक अंतर्राष्ट्रीय और एक राष्ट्रीय, इस तिमाही की विशेषता रहे। राष्ट्रीय पवन ऊर्जा संस्थान को नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव और राष्ट्रीय पवन ऊर्जा संस्थान के अध्यक्ष एवं इसकी शासी-परिषद के अध्यक्ष श्री उपेन्द्र त्रिपाठी, भा.प्र.से., के द्वारा राष्ट्र को समर्पित करने हेत् अभियांत्रिकी सेवा एकक के द्वारा तैयारियाँ पूर्ण की गई।

राष्ट्रीय पवन ऊर्जा संस्थान-दल, विदेशों में, अंतर्राष्ट्रीय सेवाएं प्रदान कर रहा है। आप सभी की शुभकामनाओं के साथ हम यह आशा करते हैं कि हम अपनी सेवाओं की गुणवत्ता का स्तर श्रेष्ठ रखते हुए समयावधि में 'पवन' के रचनात्मक समीक्षकों की अपेक्षाओं के अनुरूप अपने प्रगतिशील मार्ग के कार्यक्षेत्र में सदैव की भांति तत्पर रहेंगें।

डॉ एस गोमतीनायगम, महानिदेशक

अनुक्रमणिका

- + राष्ट्रीय पवन ऊर्जा संस्थान – सक्रिय
- + पवन ऊर्जा टरबाइन
 ब्लेड शोर के स्रोत
- -18

2

संपादकीय समिति

मुख्य संपादक

डॉ एस गोमतीनायगम महानिदेशक

सह-संपादक

डॉ. पी. कज़गवेल अपर निदेशक और एकक प्रमुख, ITCS

सदस्यगण

डॉ. राजेश कत्यात

उप महानिदेशक और एकक प्रमुख OSWH&IB

डॉ. जी गिरिधर

उप महानिदेशक और एकक प्रमुख SRRA

ए. मोहम्मद हुसैन

उप महानिदेशक और एकक प्रमुख WTRS

डी. लक्ष्मणन

निदेशक, (प्रशासन और वित्त)

एस. ए. मैश्यु

निदेशक और एकक प्रमुख WTT

ए. सेंथिल कुमार

निदेशक और एकक मुख्य, S&C

एम. अनवर अली

अपर निदेशक और एकक प्रमुख, ESD

के. भ्रूपति

अपर निदेशक और एकक प्रमुख, WRA

जे.सी. डेविड सोलोमन

अपर निदेशक और एकक प्रमुख, KS&M

THE OF WIND STATES

नीवे NIWE ISO 9001 : 2008

http://niwe.res.in

48वां अंक जनवरी - मार्च 2016

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई की समाचार पत्रिका 'पवल'

संपादकीय

वर्तमान वित्त वर्ष में, पवन ऊर्जा के क्षेत्र में पुनरुद्धार से अभी तक की उच्चतम, वार्षिक स्थापित क्षमता 3.4 गीगावॉट प्राप्त होना स्वागत योग्य है और पवन ऊर्जा के क्षेत्र में वर्ष 2022 तक भारत के 60 किलोवॉट निर्धारित लक्ष्य तक पहुंचने की दिशा में यह एक अच्छा संकेत है। हमें

आशा है कि आने वाले वर्ष में हम इसे दोगुना कर लेंगे। अपने लक्ष्य तक पहँचने का यह एक उचित मार्ग है। पवन ऊर्जा क्षेत्र को 'लघ पवन ऊर्जा प्रणाली' (SWES) के क्षेत्र में भी जीवंत माना जाता है और इसे सौर-ऊर्जा उच्च वर्ण संकर के साथ भी जोड़ कर देखा जाता है तथा इसका उपयोग छत के ऊपर, दूरसंचार टॉवरों, सुदूर सीमावर्ती क्षेत्रों और पहाड़ी क्षेत्रों में किया जा रहा है। यद्यपि इस दिशा में जागरूकता लाने, लागत में कमी लाने तथा बाज़ार की आनुपातिक दरों में वृद्धि करने की आवश्यकता है क्योंकि जलवायु परिवर्तन के योगदान और शमन प्रयासों पर भी इसका अधिक प्रभाव पड़ता है। पवन ऊर्जा क्षेत्र इस समय पवन ऊर्जा टरबाइन उपकरण निर्माताओं के बाज़ार से भी वंचित ही है, जिनकी संख्या 20 से कुछ ही अधिक है और यह केवल बहु-मेगावॉट क्षेत्र में कार्य कर रहे उत्पादकों के लिए ही सुविधाजनक है; तथापि अंतर्राष्ट्रीय उद्योग-जगत में इस क्षेत्र के लिए उत्साह है और वे भारत के लिये कम पवन व्यवस्था युक्त अत्याधुनिकतम विशिष्ट सुविधायुक्त बहु-मेगावॉट पवन ऊर्जा टरबाइन निर्माण करने में रुचि दिखा रहे हैं। यह उच्च क्षमता युक्त WTG में होता है, और वह 2 से 3 मेगावॉट के समीप है तथा उसके रोटॉर का व्यास बड़ा हो, इस्पात के लम्बे एवं ठोस कॉक्रीट और उच्च वर्ण संकर युक्त टॉवर हों। भारत में विशिष्ट बहु-मेगावॉट मॉडल का निर्माण करने हेत् अपने मॉडल्स प्रस्तुत करते हुए स्पेन देश की मैसर्स एक्किओना और मैसर्स जी.ई. रिन्युएबल्स कम्पनियाँ, इस क्षेत्र में, भारत में प्रवेश करने हेतु इस वर्ष सामने आई हैं।

हमें आशा है कि बहुप्रतीक्षित पवन ऊर्जा - सौर ऊर्जा उच्च वर्ण संकर पुनरुद्धारीकरण की दरों, प्रथम अपतटीय पवन ऊर्जा क्षेत्र, उप-मेगावॉट निर्माताओं के समर्थन में माइक्रो ग्रिड नीति, अंतर्राज्य विद्युत हस्तांतरण, पवन ऊर्जा का खुला विक्रय, पृथक ऑफ-ग्रिड प्रणाली को उत्साहित करने के अतिरिक्त भारत सरकार इस दिशा में निश्चित रूप से नितियों की शीघ्र घोषणा करेगी। उद्योग जगत की यह भी आशा है कि एकीकृत पवन ऊर्जा टरबाइन क्षेत्रों के लिए पारंपरिक ऊर्जा संयंत्र की तरह संचालन के साथसाथ ऊर्जा भंडारण प्रणालियों के लिए दरों में वृद्धि की जाएगी। पवन ऊर्जा उद्योग को उपर्युक्त नीतिगत विषयों में अन्य नवीकरणीय ऊर्जा के क्षेत्रों से और भी अधिक आशा है।

LiDAR संरचना संस्थापना की प्रक्रिया में, गुजरात राज्य के लिये आदेश दे दिए गए हैं और कई पर्यावरण स्वीकृतियों और अन्य सीआरजेड स्वीकृति प्रक्रिया का कार्य प्रगति पर है। राष्ट्रीय पवन ऊर्जा संस्थान में WINDCUBE v2 उपकरण की आपूर्ति कर दी गई है और अंशांकन कार्य प्रगति पर है। लघु पवन ऊर्जा टरबाइन क्षेत्र की उन्नति के प्रचार की शृंखला के क्रम में सर्वप्रथम कार्यशाला भुवनेश्वर में आयोजित की गई, जिसमें हितधारकों को नवीन और नवीकरणीय ऊर्जा मंत्रालय की नवीन योजनाओं की व्याख्या और इसके लाभों से अवगत करवाया गया।

तमिलनाडु राज्य के क्षेत्रों में पवन ऊर्जा पूर्वानुमान सेवाएं श्रेष्ठ और सफल रही हैं। वोर्टेक्स-राष्ट्रीय पवन ऊर्जा संस्थान की वास्तविक समय पूर्वानुमान सेवाएं प्रदान करने के सहयोग को शासी-परिषद के द्वारा मान्यता प्रदान की गई है और सभी त्वरा पवन गित राज्यों को एवं अखिल भारतीय स्तर पर सेवा विस्तारण हेतु सिफारिश की गई है। राष्ट्रीय पवन ऊर्जा संस्थान और जर्मनी देश की मैसर्स टीयूवी राईनलैंड के साथ मान्यता प्राप्त प्रमाणीकरण सेवाओं की पूर्वानुमान सेवा और समय-निर्धारण विषय पर अंतर्राष्ट्रीय कार्यशालाओं के संयुक्त प्रस्ताव पर उद्योग जगत के हितधारकों में इसका सशक्त प्रभाव हुआ है।

पवन ऊर्जा टरबाइन परीक्षण की 3 मशीनें उपकरण के साथ तैयार की जा रही हैं, इनके कृत्रिम परीक्षण किए जा रहे हैं और त्वरा पवन गति मौसम की प्रतिक्षा की जा रही है।

राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों के द्वारा SLDC (TANGEDCO) और SRPC / SRLDC के साथ LVRT की आवश्यकताओं को अधिक कठोरता के साथ कार्यान्वयनित करने हेत् विभिन्न विषयों पर विचार-विमर्श किया गया क्योंकि CEA द्वारा निर्धारित दिनांक की समय-सीमा समाप्त हो चुकी है, लेकिन पूर्व में पारित व्यावहारिक मृद्दों पर कार्य करना शेष है। कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में अभिनव सुक्ष्म थ्रस्टर संवर्धित पवन ऊर्जा टरबाइन परियोजना और पवन ऊर्जा-सौर ऊर्जा उच्च वर्ण संकर परियोजनाओं के कार्य प्रगति पर हैं। दिनांक 18 मार्च 2016 को संस्थान के स्थापना दिवस के अवसर पर 2 पाठ्यक्रम, एक अंतर्राष्टीय और एक राष्ट्रीय, इस तिमाही की विशेषता रहे। राष्टीय पवन ऊर्जा संस्थान को नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव और राष्ट्रीय पवन ऊर्जा संस्थान के अध्यक्ष एवं इसकी शासी-परिषद के अध्यक्ष श्री उपेन्द्र त्रिपाठी, भा.प्र.से., के द्वारा राष्ट्र को समर्पित करने हेत् अभियांत्रिकी सेवा एकक के द्वारा तैयारियाँ पूर्ण की गई।

राष्ट्रीय पवन ऊर्जा संस्थान-दल, विदेशों में, अंतर्राष्ट्रीय सेवाएं प्रदान कर रहा है। आप सभी की शुभकामनाओं के साथ हम यह आशा करते हैं कि हम अपनी सेवाओं की गुणवत्ता का स्तर श्रेष्ठ रखते हुए समयाविध में 'पवन' के रचनात्मक समीक्षकों की अपेक्षाओं के अनुरूप अपने प्रगतिशील मार्ग के कार्यक्षेत्र में सदैव की भांति तत्पर रहेंगें।

डॉ एस गोमतीनायगम, महानिदेशक

अनुक्रमणिका

- पवन ऊर्जा टरबाइन ब्लेड शोर के स्रोत
- -18

2

संपादकीय समिति

मुख्य संपादक

डॉ एस गोमतीनायगम महानिदेशक

सह-संपादक

डॉ. पी. कनगवेल

अपर निदेशक और एकक प्रमुख, ITCS

सदस्यगण

डॉ. राजेश कत्याल

उप महानिदेशक और एकक प्रमुख OSWH&IB

डॉ. जी गिरिधर

उप महानिदेशक और एकक प्रमुख SRRA

ए. मोहम्मद हुसैन

उप महानिदेशक और एकक प्रमुख WTRS

डी. लक्ष्मणन

निदेशक, (प्रशासन और वित्त)

एस. ए. मेश्यु

निदेशक और एकक प्रमुख WTT

ए. सेंथिल कुमार

निदेशक और एकक मुख्य, S&C

एम. अनवर अली

अपर निदेशक और एकक प्रमुख, ESD

के. भ्रुपति

अपर निदेशक और एकक प्रमुख, WRA

जे.सी. डेविड सोलोमन

अपर निदेशक और एकक प्रमुख, KS&M

अपतटीय, लघु पवन ऊर्जा उच्च वर्ण संकर प्रणाली और औद्योगिक व्यवसाय

अपतटीय गतिविधियाँ

(i) LiDAR उपसंरचना की संस्थापना हेतु पर्यावरण प्रभाव मूल्यांकन

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा गुजरात राज्य में खंभात की खाड़ी में पीपावाव-बंदर के समीप अपतटीय पवन ऊर्जा टरबाइन निर्धारण हेतु LiDAR-उपसंरचना की संस्थापना के लिए द्रुत पर्यावरण प्रभाव मूल्यांकन रिपोर्ट (ईआईए) तैयार करने की प्रक्रिया का कार्य प्रगति पर है। पर्यावरण प्रभाव मूल्यांकन रिपोर्ट (ईआईए) को आवश्यक पर्यावरण स्वीकृति हेतु गुजरात राज्य के समुद्री तटवर्ती क्षेत्र / वन एवं जलवायु परिवर्तन और पर्यावरण मंत्रालय (MoEF&CC) को प्रस्तुत किया जाएगा।

इस संबंध में गृह मंत्रालय, रक्षा मंत्रालय और अंतरिक्ष विभाग से अपेक्षित स्वीकृति प्राप्त करने हेतु आवश्यक प्रक्रिया आरंभ कर दी गई है।

गुजरात राज्य में खंभात की खाड़ी में पीपावाव-बंदर के समीप LiDAR-उपसंरचना की संस्थापना हेतु LiDAR - प्रस्तावित स्थल।

(ii) अपतटीय पवन ऊर्जा टरबाइन संसाधन निर्धारण हेतु अपतटीय LiDAR-क्रयप्रक्रिया

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा गुजरात राज्य में खंभात की खाड़ी में पीपावाव-बंदर के समीप अपतटीय पवन ऊर्जा टरबाइन निर्धारण हेतु LiDAR-मंच उपसंरचना संस्थापित करने का कार्य प्रगति पर है। भारत में अपतटीय पवन ऊर्जा विकास के लिए एक रूपरेखा विकसित करने के उद्देश्य से यूरोपीय संघ (EU) की परियोजना FOWIND के अंतर्गत यह कार्य किया जा रहा है।

राष्ट्रीय पवन ऊर्जा संस्थान और यूरोपीय संघ (EU) के मध्य हुए समझौता-ज्ञापन के अंतर्गत इस LiDAR-मंच उपसंरचना को क्रय किया गया है। LiDAR का डॉपलर, पवन ऊर्जा LiDAR प्रणाली है और इसका मार्क WINDCUBE v2 है। राष्ट्रीय पवन ऊर्जा संस्थान के कार्मिकों को LiDAR के संचालन हेतु प्रशिक्षण प्रदान किया जायेगा। रामेश्वरम में LiDAR-अंशांकन की योजना बनाई गई है जिसके लिए 120 मीटर ऊँचे अपतटीय मस्तूल से प्राप्त आँकड़े पहले से ही विद्यमान हैं और इनके मापन का कार्य प्रगति पर है।

डॉपलर पवन ऊर्जा LiDAR प्रणाली और अपतटीय WINDCUBE v2

लघ पवन ऊर्जा टरबाइन - गतिविधियाँ

(i) "लघु पवन ऊर्जा टरबाइन और उच्च वर्ण संकर प्रणाली के लिए नवीन और नवीकरणीय ऊर्जा मंत्रालय की योजना" विषय पर हितधारकों के लिए क्षेत्रीय कार्यशाला।

नवीन और नवीकरणीय ऊर्जा मंत्रालय ने कुछ समय पूर्व 'लघु पवन ऊर्जा टरबाइन प्रणाली' (SWES) विषय पर अपनी नितियों में संशोधन किया है जिसके अनुसार केन्द्रीय वित्तीय सहायता (सीएफए) का लाभ अब दूरसंचार क्षेत्र में भी उपलब्ध हो सकेगा। दूरसंचार क्षेत्र में 'लघु पवन ऊर्जा टरबाइन प्रणाली' (SWES) का विकास तीव्र गित से हो इसके लिए नवीन और नवीकरणीय ऊर्जा मंत्रालय के सहयोग से राष्ट्रीय पवन ऊर्जा संस्थान ने नवीन और नवीकरणीय ऊर्जा मंत्रालय की संशोधित योजनाओं के व्यापक प्रचारप्रसार के लिए क्षेत्रीय कार्यशालाओं / बैठकों का आयोजन करने की एक योजना बनाई है। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा निम्नवत कार्यक्रम के अनुसार पांच स्थानों पर कार्यशालाओं का आयोजन किया जाएगा।

क्रम संख्या	कार्यशाला स्थल	हितधारक
1.	राष्ट्रीय पवन ऊर्जा	तमिलनाडु और कर्नाटक;
	संस्थान, चेन्नई	आंध्र प्रदेश और केरल
2.	पुणे	महाराष्ट्र, गोवा और गुजरात
3.	भोपाल	मध्य प्रदेश,छत्तीसगढ़ और राजस्थान
4.	भुवनेश्वर	उड़ीसा, पश्चिम बंगाल और झारखंड
5.	गुवाहाटी	पूर्वोत्तर राज्य

उपर्युक्त कार्यक्रम का मुख्य उद्देश्य राज्य नोडल एजेंसियों, वित्तीय संस्थानों / बैंकर्स, मोबाइल टॉवर ऑपरेटरों और स्थानीय समुदाय के उपयोगकर्ताओं में जागरूकता उत्पन्न करवाना है।

दिनांक 28 मार्च 2016 को भुवनेश्वर में 'पवन ऊर्जा टरबाइन निर्धारण' (WRA) और 'लघु पवन ऊर्जा टरबाइन प्रणाली' (SWES) दोनों परियोजनाओं के विषयों पर प्रथम कार्यशाला आयोजित की गई।

(ii) 'लघु पवन ऊर्जा टरबाइन प्रणाली' (SWES) को सूचीबद्ध करने हेतु बैठक।

नवीन और नवीकरणीय ऊर्जा मंत्रालय के द्वारा सूचीबद्ध की गई 'लघु पवन ऊर्जा टरबाइन प्रणाली' (SWES) की समीक्षा हेतु एक तकनीकी समिति का गठन किया गया है। दिनांक 02 मार्च 2016 को इस तकनीकी समिति की बैठक आयोजित की गई। तकनीकी समिति की बैठक की सिफारिशों के आधार पर इसे सूचीबद्ध किया गया, 13 वीं सूची शीघ्र ही ज़ारी की जाएगी। आगंतुक

मैसर्स ASRANet लिमिटेड, 5, सेंट विन्सेंट प्लेस, ग्लासगो, G1 2DH के निदेशक प्रो. पूर्णेंदु के. दास ने भारत-ब्रिटेन सहयोगात्मक औद्योगिक अनुसंधान और विकास कार्यक्रम से संबंधित कार्यपद्धति एवं विचार-विमर्श हेतु राष्ट्रीय पवन ऊर्जा संस्थान का भ्रमण किया।

पवन ऊर्जा संसाधन निर्धारण

जनवरी – मार्च 2016 की अवधि में 2 पवन ऊर्जा निगरानी स्टेशन (WMS) (एक तिमलनाडु राज्य और एक मेघालय में) संस्थापित किए गए और 25 पवन ऊर्जा निगरानी स्टेशन (WMS) बंद किए गए (महाराष्ट्र में 7, गुजरात में 1, कर्नाटक में 3, राजस्थान में 5, आंध्र प्रदेश में 2, तेलंगाना में 3 और मध्य प्रदेश में 4)। वर्तमान समय में, नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) और विभिन्न उद्यमियों द्वारा वित्त पोषित विभिन्न पवन ऊर्जा निगरानी परियोजनाओं के अंतर्गत, 14 राज्यों और एक केंद्र शासित प्रदेश में, 79 पवन ऊर्जा निगरानी स्टेशन प्रचालन कार्य कर रहे हैं। निम्नलिखित परामर्श परियोजनाएं पूर्ण की गईं और इस अवधि में रिपोर्ट प्रस्तुत की गई;

- 21 क्षेत्रों के लिए पवन ऊर्जा निगरानी की प्रक्रिया का सत्यापन।
- 2 क्षेत्रों के लिए WPD मानचित्र तैयार करना।
- प्रस्तावित 150 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र के लिए ऊर्जा मल्याकंन।
- 50 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र के लिए विद्युत वक्र ऊर्जा प्रदर्शन (PCED)।
- 50 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र हेतु क्षेत्र-सत्यापन और उत्पादन-मृल्याकंन।
- वर्तमान पवन ऊर्जा टरबाइन क्षेत्रों का पुनरूद्धार / इंटर-क्रोपिंग।
- 2 क्षेत्रों के लिए पवन ऊर्जा टरबाइन निर्धारण अध्ययन।

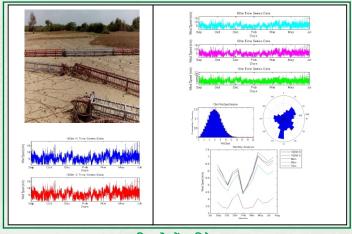
पवन ऊर्जा-विद्युत ऊर्जा पूर्वानुमान सेवाएं

- तमिलनाडु राज्य में 90 उपस्टेशनों के फीडर समूह को 110 एबीटी मीटर्स से जोड़ा गया।
- राष्ट्रीय पवन ऊर्जा संस्थान ने पूर्वानुमान परिणाम की उत्कृष्ट ट्यूनिंग करने हेतु वास्तविक समय उत्पादन आँकड़ों की सहायता से अपनी संस्थान-विधि विकसित की है।
- राष्ट्रीय पवन ऊर्जा संस्थान ने परिष्कृत पूर्वानुमान परिणामों को साझा करने के लिए एक स्वचालन प्रणाली तैयार की है जिसके अंतर्गत ई-मेल के माध्यम से तमिलनाडु राज्य के ऊर्जा सचिव, मुख्य अभियंता-NCES, अध्यक्ष एवं प्रबंध निदेशक -TANGEDCO, निदेशक-प्रचालन RLDC, अध्यक्ष IWPA और अन्य हितधारकों के साथ इन्हें आपस में साझा किया जा सकेगा।
- द्वितीय अंतरिम रिपोर्ट तैयार की गई और IWPA को प्रेषित की गई।
- राष्ट्रीय पवन ऊर्जा संस्थान ने अपनी विभिन्न गतिविधियाँ आरंभ की हैं जिसके अंतर्गत संख्यात्मक मौसम पूर्वानुमान प्रौद्योगिकी का उपयोग करते हुए स्वंय का पूर्वानुमान मॉडल विकसित किया जा रहा है।

 राष्ट्रीय पवन ऊर्जा संस्थान ने पवन ऊर्जा पूर्वानुमान के लिए एक समर्पित वेब पोर्टल विकसित किया है।

पवन ऊर्जा संसाधन निर्धारण (WRA) के वर्ष 2015-16 में अछूते/नए क्षेत्र

मेघालय राज्य में 50 मीटर ऊँचा एक पवन ऊर्जा निगरानी स्टेशन संस्थापित एवं प्रचालित किया गया।


पवन ऊर्जा संसाधन निर्धारण (WRA) एकक में अनुसंधान एवं विकास की प्रगति

तामिलनाडु राज्य के 'आरुपदै वीडु प्रौद्योगिकी संस्थान' में इस क्षेत्र के पवन ऊर्जा के प्रतिरूप प्रवाह को समझने के लिए 50 मीटर ऊँचा एक पवन ऊर्जा निगरानी स्टेशन संस्थापित एवं प्रचालित किया गया।

भारत के 7 राज्यों में 100 मीटर स्तर तक के WPP का निर्धारण और मान्यकरण

राष्ट्रीय पवन ऊर्जा संस्थान द्वारा 'पवन ऊर्जा विद्युत संभावना, निर्धारण और मान्यकरण परियोजना' के अंतर्गत, भारत के 7 राज्यों में 100 मीटर ऊँचाई के, 75 पवन ऊर्जा निगरानी स्टेशन संस्थापित किए गए हैं। (10 आंध्र प्रदेश में, 12 गुजरात में, 12 राजस्थान में, 13 कर्नाटक में, 8 महाराष्ट्र में, 8 मध्य प्रदेश में और 12 तमिलनाडु में)। आकड़ों के अधिग्रहण का कार्य प्रगति पर है।

देश के विभिन्न क्षेत्रों के 69 पवन ऊर्जा निगरानी स्टेशनों से एक वर्ष के निरंतर आकड़ों के अधिग्रहण (10 आंध्र प्रदेश में, 12 गुजरात में, 4 मध्य प्रदेश में, 8 महाराष्ट्र में, 13 कर्नाटक में, 10 राजस्थान में और 12 तमिलनाडु में) और 45 पवन ऊर्जा निगरानी स्टेशनों से 2 वर्षों के निरंतर आकड़ों के अधिग्रहण का कार्य सफलतापूर्वक पूर्ण किया गया।

मासिक आँकड़ों का विश्लेषण

'पवन' - 48वां अंक जनवरी – मार्च 2016

- भारत के 7 राज्यों में 27 स्टेशनों की सतत पवन ऊर्जा टरबाइन निगरनी का कार्य किया जा रहा है और वास्तविक समय पवन ऊर्जा के आँकड़े प्राप्त किए जा रहे हैं।
- पवन ऊर्जा के मासिक आँकड़ों का विश्लेषण, सत्यापन और अंतरिम रिपोर्ट तैयार करने का कार्य प्रगति पर है।

पवन ऊर्जा संसाधन निर्धारण अध्ययन हेतू निम्नवत कार्य किए गएः

 असम राज्य में मैसर्स ऑयल इंडिया के लिए 4 पवन ऊर्जा निगरानी स्टेशन संस्थापित एवं प्रचालित किए गए।

अन्य कार्यक्रम

- दिनांक 08 जनवरी, 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में अभिकल्प, संरचना, परिवहन, सिविल कार्य और 50 मीटर ऊँचे मस्तूल की स्थापना, विक्रेता का चयन करने और तकनीकी बोलियों का मूल्यांकन करने हेतु तकनीकी समिति की द्वितीय बैठक आयोजित की गई।
- दिनांक 11 फरबरी से 13 फरबरी, 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान में 'पवन ऊर्जा-विद्युत पूर्वानुमान हेतु उन्नत स्तरीय प्रशिक्षण' आयोजित किया गया।

- दिनांक 01 मार्च 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में 50 मीटर/80 मीटर जालीदार- मस्तूल, 10 मीटर / 20 मीटर ट्यूबलर- मस्तूल (शहरी पवन ऊर्जा की निगरानी हेतु) पवन ऊर्जा सेंसर एवं आँकड़ा-संग्रहण और LiDAR के तकनीकी विनिर्देश तैयार करने के लिए प्रथम स्थाई तकनीकी समिति की बैठक आयोजित की गई।
- दिनांक 26 फरवरी 2016 से 01 मार्च 2016 की अवधि में सहायक निदेशक (तकनीकी) श्री ए. जी. रंगराज ने पवन ऊर्जा पूर्वानुमान हेतु तमिलनाडु राज्य में चयनित उपस्टेशनों में लगाए गए डीबीटी मीटरों का सत्यापन कार्य किया।
- दिनांक 29 फरवरी 2016 से 02 मार्च 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान के कार्मिकों के लिए मैसर्स ESRI ने राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में 'ESRI-ArcGIS सॉफ्टवेयर प्रशिक्षण' का आयोजन किया।
- दिनांक 11 मार्च से 02 मार्च 2016 की अविध में एकक प्रमुख श्री के भूपित और सहायक अभियंता श्री बी कृष्णन ने जम्मू स्थित मैसर्स JAKEDA के लिए जम्मू के बिड्डा क्षेत्र के लिए डीपीआर तैयार करने हेतु भ्रमण किया एवं जम्मू और कश्मीर राज्य के विज्ञान एवं प्रौद्योगिकी मंत्रालय के सचिव के साथ चर्चा की।

पवन ऊर्जा - विद्युत पूर्वानुमान और निर्धारण विषय पर अंतर्राष्ट्रीय कार्यशाला

दिनांक 13 मई 2015 को पवन ऊर्जा-विद्युत पूर्वानुमान सेवा का शुभारंभ किया गया था, और तमिलनाडु राज्य के स्वामित्व वाली विद्युत उत्पादन और वितरण उपयोगिता, TANGEDCO को सहायता प्रदान की जा रही है, जो कि इस क्षेत्र में पवन ऊर्जा उत्पादन में उतार-चढाव का प्रबंधन श्रेष्ठतर कर रहे हैं। पवन ऊर्जा-विद्युत पूर्वानुमान विद्युत संतुलन के आवंटन में एक महत्वपूर्ण भूमिका निभाता है। भारतीय पवन ऊर्जा उद्योग के पूरे स्पेक्ट्रम की एक तकनीकी केन्द्र बिन्द के रूप में राष्टीय पवन ऊर्जा संस्थान ने स्पेन की मैसर्स एस.एल.वोर्टेक्स के साथ भागीदारी की है और इसके प्रारम्भ में तमिलनाडु राज्य में पवन ऊर्जा पूर्वानुमान में वृद्धि करने हेतु कार्य किया है। वर्तमान में 'भारतीय पवन ऊर्जा संघ' (IWPA) ने राष्ट्रीय पवन ऊर्जा संस्थान से संपर्क स्थापित करते हुए अनुरोध किया है कि सीईआरसी-प्रचलन के मानदंडों के अनुसार पूर्ण तमिलनाडु राज्य हेतु पवन ऊर्जा पूर्वानुमान किया जाए। तदनुसार, राष्ट्रीय पवन ऊर्जा संस्थान ने पवन ऊर्जा उद्योग हेतु सटीक पूर्वानुमान प्रदान करने के लिए नई पूर्वानुमान सेवा विकसित की है जिससे राज्य लोड डिस्पैच सेंटर (SLDC) के ग्रिड प्रचालक अधिक पवन ऊर्जा-विद्युत का उत्पादन कर सकेंगे।

वर्तमान में, दिनांक 8 फरबरी से 10 फरबरी 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान के पवन ऊर्जा संसाधन निर्धारण एकक और 'भारतीय पवन ऊर्जा संघ' (IWPA) ने संयुक्त रूप से 'पवन ऊर्जा-विद्युत पूर्वानुमान और निर्धारण' विषय पर चेन्नई स्थित रेडिसन ब्ल्यू होटल-जीआरटी में एक अंतर्राष्ट्रीय कार्यशाला का आयोजन किया। इस कार्यशाला में देश के विभिन्न भागों से लगभग 150 प्रतिभागियों, स्पेन की मैसर्स वोर्टेक्स एवं मैसर्स मेटोबल्यू और हितधारकों ने भाग लिया है।

अंतर्राष्ट्रीय कार्यशाला का उद्देश्य

भारत में 25 गीगावॉट से अधिक पवन ऊर्जा की स्थापित क्षमता के साथ ही भारत की कुल ऊर्जा उत्पादन में 4-5% की वृद्धि हो सकती है। परंतु पवन ऊर्जा को ग्रिड में समायोजित करना स्वंय में एक प्रमुख विषय है क्योंकि ऊर्जा का यह संसाधन रुक-रुक कर प्राप्त होता है और इसका पूर्वानुमान करने में असमर्थता होती है। TANGEDCO जो ग्रिड के साथ इसे जोड़ने के लिए प्रभारी है इसमें संघर्षरत है। इस समस्या का समाधान करने के लिए उचित पूर्वानुमान और पवन ऊर्जा का निर्धारण आवश्यक है। राष्ट्रीय पवन ऊर्जा संस्थान ने तमिलनाड़ राज्य के लिए पवन ऊर्जा पूर्वानुमान के क्षेत्र में सुविज्ञता प्राप्त की है जिससे कुल स्थापित क्षमता का 30% से अधिक प्राप्त हुआ है और आँकड़ों को भविष्य की योजना के लिए ग्राहकों को भेजा जा रहा है। राज्य विद्युत विनियामक आयोग संशोधित सूत्र के आधार पर त्रुटि के प्रतिशत की गणना में यह न्यूनतम 2% से 6% तक पाया गया। पवन ऊर्जा पूर्वानुमान तकनीक तमिलनाडु राज्य में प्रमाणित हुई है, अब विद्युत की उपलब्धता और आवश्यकता के आधार पर इसे योजनाबद्ध करने की आवश्यकता है। इस कार्यशाला के माध्यम से संगठनों के मध्य चर्चा करते हए पूर्ण देश में पूर्वानुमान तकनीक और विद्युत निर्धारण को लागू करने की आवश्यकता है। जिसके आधार पर अधिकतम पवन ऊर्जा की निकासी के लिए आवश्यक कार्रवाई की जा सकती है।

पूर्वानुमान और निर्धारण की आवश्यकता

पवन ऊर्जा के क्षेत्र में अग्रणीय देश चीन, अमेरिका, जर्मनी, स्पेन आदि देशों ने पवन ऊर्जा को ग्रिड के साथ जोड़ कर जीवाश्म ईंधन के प्रयोग से होने वाले प्रदूषण को कम किया है। इसके लिए पूर्वानुमान प्रभावी और सशक्त होना आवश्यक है जिससे सविराम आपूर्ति प्राप्त होती रहे। पूर्वानुमान सबंधी समस्याओं के समाधान हेत् राष्ट्रीय पवन ऊर्जा संस्थान ने मैसर्स वोर्टेक्स प्राइवेट लिमिटेड के साथ पूर्वानुमान तकनीक का अध्ययन किया है और त्रुटि के स्तर को 80 प्रतिशत से 6 प्रतिशत तक लाने में सफलता प्राप्त हुई है। इस वर्तमान कार्यशाला में SLDC और अन्य संगठन एक स्थल में बैठकर विदेशी आगुंतकों के साथ परस्पर वार्तालाप करते हुए पूर्वानुमान और पवन ऊर्जा का निर्धारण करने के विचारों का आदान-प्रदान कर सकते हैं।

श्री शिवप्रकाशम इस समारोह के मुख्य अतिथि थे, उन्होंने अपने विचारों से अवगत करवाते हुए बताया कि किस प्रकार पूर्वानुमान और निर्धारण के द्वारा वर्ष 2022 तक भारत सरकार के नवीकरणीय ऊर्जा और हरित विद्युत परियोजनाओं के विशाल लक्ष्यों को प्राप्त करने में हम अपना योगदान दे सकते हैं। एकीकृत-ग्रिड राष्ट्र को एकीकृत करता है। हमें अपना ध्यान इस बात पर केंद्रित करने की आवश्यकता है कि किस प्रकार से विद्युत संरचना का निर्माण किया जाए, जिससे विद्युत जमाव कम हो, कम लागत एवं प्रभावी प्रणाली हो और अधिकतम हरित विद्युत निकासी करने में सहायता मिलती जाए।

डॉ. कार्ल गट्बोर्ड ने अपने उद्घाटन भाषण में पूर्वानुमान के संदर्भ में अपने विचार "पवन ऊर्जा अंतर्राष्ट्रीय परिप्रेक्ष्य" विषय के द्वारा व्यक्त किए। उन्होंने कहा कि पारंपरिक ऊर्जा की अपेक्षाकृत हमें पवन ऊर्जा को अपनाना चाहिए क्योंकि इसमें ईंधन लागत शून्य होती है, और इससे राष्ट्र के सतत विकास को बनाए रखने में सहायता मिलती है, और जीवाश्म ईंधन से उत्सर्जन कम होता है,वर्तमान ऊर्जा की मांग में वृद्धि केवल नवीकरणीय ऊर्जा के माध्यम से ही दूर की जा सकती है, और पवन ऊर्जा के क्षेत्र में की गई पूर्वानुमान तकनीकों से वृद्धि के विकास ने हमें संतुष्ट किया है, आत्मविश्वास के स्तर को ऊँचा किया है और पवन ऊर्जा की क्षमता के क्षेत्र में और अधिक खोज करने की ओर हमें आकर्षित किया है।

वैश्विक विद्युत की मांग-आपूर्ति श्रृंखला के आधार पर उन्होंने राष्ट्रों को 3 खंडों में वर्गीकृत किया।

- प्रथम वर्ग में वे राष्ट्र आते हैं जहां विद्युत की मांग वर्षों से स्थिर है। स्विट्जरलैंड जैसे अमीर देशों को इस श्रेणी में रखा जा सकता है जहां विद्युत की मांग को पूरा करना एक समस्या नहीं है। विद्युत की पर्याप्त मात्रा में स्थापित क्षमता उपलब्ध होने के साथ उन्हें नवीकरणीय ऊर्जा के क्षेत्र में प्रवेश करने की आवश्यक नहीं है।
- ii) द्वितीय वर्ग में वे राष्ट्र आते हैं जहां विद्युत की मांग में कुछ वृद्धि होती है। अमेरिका जैसे विकसित देशों को इस श्रेणी में रखा जा सकता है। वे नवीकरणीय ऊर्जा पद्धति के माध्यम से अपनी विद्युत की मांग को पूरा कर सकते हैं या वे थर्मल स्टेशन ऊर्जा पद्धति के माध्यम से भी अपनी उपलब्धता पूर्ण करते हुए एक आलीशान जीवन व्यतीत कर सकते हैं।
- iii) तृतीय वर्ग में भारत जैसे राष्ट्र आते हैं जहां जनसंख्या वृद्धि होने पर विद्युत की मांग में वृद्धि होती जाती है। भारत में थर्मल स्टेशन ऊर्जा पद्धति या ऊर्जा के अन्य परंपरागत संसाधन नहीं हैं, जिसके कारण भारत में ऊर्जा संकट बना रहता है, इसलिए इस वर्ग के राष्ट्रों के लिए यह अत्यावश्यक हो जाता है कि ऊर्जा संकट की समस्या को दूर करने के लिए प्रभावी ढंग से नवीकरणीय ऊर्जा का उपयोग करें।

उन्होंने कहा कि अब वैश्विक राष्ट्र यह विचार कर रहे हैं कि वे किस प्रकार भारत देश की ऊर्जा की समस्या का समाधान कर सकते हैं। अंततोगत्वा, इस प्रकार से अन्य देश भी उनका अनुपालन कर सकते हैं।

'पवन' - 48वां अंक जनवरी – मार्च 2016

कार्यशाला-सत्रों में निम्नवत विषय थे:

क्र.सं.	सत्र में व्याख्यान –विषय	वक्ता
1.	पवन की गति, पूर्वानुमान प्रक्रिया – एक परिचय और पवन की गति, पूर्वानुमान प्रक्रिया – सविस्तार वर्णन	डॉ कार्ल जी गटब्रॉड मेटोब्ल्यू ए जी, स्विट्जरलैंड
2.	पवन ऊर्जा एवं विद्युत पूर्वानुमान – पवन ऊर्जा टरबाइन निर्माण के परिप्रेक्ष्य में	सुश्री लाइन स्टॉर्लव्मो होल्म्बर्ग, निदेशक, संयंत्र सिटिंग और पूर्वानुमान, वेस्टास, डेनमार्क
3.	ऊर्जा भंडारण	श्री रयान जेनसन सस्केचेवान, रिसर्च कॉऊंसल, कनाडा
4.	राष्ट्रीय पवन ऊर्जा संस्थान- मैसर्स वोर्टेक्स द्वारा	श्री जोर्डी फेर्रर,मैसर्स वोर्टेक्स FDC, स्पेन &
	पवन ऊर्जा पूर्वानुमान	डॉ एस गोमतिनायगम, राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई
5.	पवन ऊर्जा एवं विद्युत, वृहद हिस्सों का एकीकरण –डेनमार्क के अनुभव	श्री पीटर जोर्गेनसन, उपाध्यक्ष, एनेर्जाइनेट, डेनमार्क
6.	डेनमार्क में नवीकरणीय ऊर्जा - एकीकरण और संतुलन	श्री नेविल बिसगार्ड पेडरसन, वरिष्ठ सलाहकार, डेनिश ऊर्जा एजेंसी (डीईए)।
7.	स्पेन में नवीकरणीय ऊर्जा - निर्धारण प्रथाओं का एकीकरण और संतुलन	श्री एलेजांद्रो लोपेज कॉसेलो, मीटरिंग और इनर्जी ट्रेडिंग प्रबंधक, गैस नेचुरल फेनोसा रिन्युएबल्स।
8.	स्पेन में परंपरागत संसाधन ऊपर/नीचे ढलान पद्धति द्वारा पवन ऊर्जा का पूर्ण समावेश करना	श्री डेनियल सांचेज़ लुक़ुए, रिन्युएबल डिस्पैच सेंटर सुपरवाइजर, गैस नेचुरल फेनोसा रिन्युएबल्स
9.	हरित ऊर्जा कॉरिडोर	श्री कशिश भाम्भानी, सी.ई- स्मार्ट ग्रिड पीजीसीआईएल, नई दिल्ली
10.	सामान्य निर्धारण हेतु तमिलनाडु पवन ऊर्जा में अलग नियंत्रण क्षेत्र की योजना	श्री अनिल थॉमस, अधिशासी अभियंता (प्रचालन) एसआरपीसी, बैंगलोर
11.	पवन ऊर्जा एकीकरण की समस्याएं –प्रणाली प्रचालक का दृष्टीकोण	श्री एच के चावला, उपमहाप्रंबंधक, NRLDC
12.	बाजार तंत्र के अधिशेष हेतु योजना	श्री प्रवीण अब्राहम, निदेशक मणिकरण पवन ऊर्जा विद्युत लिमिटेड
13.	पवन ऊर्जा निर्धारण: डीपूलिंग और डीएसएम प्रभार	श्री विशाल पाँन्डया, निदेशक, रिकॉनेक्ट इनर्जी
14.	राजस्थान में निर्धारण और पूर्वानुमान	श्री महेश वीप्रदास, वरिष्ठ उपमहाप्रंबंधक एवं प्रमुख, रेगुलेटरी अफैयर्स, सुज़लॉन
15.	पवन ऊर्जा और आभासी-ताल की अवधारणा में ग्रिड स्थिरता की समस्याएं और समाधान	श्री वी के अग्रवाल, रीजेन्न पावर टेक लिमिटेड, नई दिल्ली
16.	भारत में पवन ऊर्जा एकीकृत के सीईआरसी नियामक प्रचलित नियम	शिल्पा अग्रवाल उप प्रमुख (अभियंता), सीईआरसी
17.	ग्रिड एकीकरण नवीकरणीय उत्पादन हेतु प्रबंधन	श्री महेश वीप्रदास, वरिष्ठ उपमहाप्रंबंधक एवं प्रमुख, रेगुलेटरी अफैयर्स, सुज़लॉन
18.	पवन ऊर्जा ग्रिड में गिरावट से बचाव – कर्नाटक राज्य के अनुभव	श्री एम आर श्रीनिवास मूर्ति, भा.प्र.से. (सेवानिवृत) पूर्व अध्यक्ष
19.	वर्ष 2012 में पवन ऊर्जा का पूर्ण समावेश – तमिलनाडु राज्य के अनुभव	श्री पी आर मुरलीधरन, SE-REMC SLDC, TANGEDCO
20.	पवन ऊर्जा विद्युत सयंत्र ग्रिड एकीकरण हेतु वैश्विक तकनीकी आवश्यकताएं – वेस्टॉस परिप्रेक्ष्य में	श्री मनोज गुप्ता, विशेषज्ञ - ग्रिड एकीकरण, वेस्टास विंड प्रौद्योगिकी, सिंगापुर
21.	नवीकरणीय ऊर्जा का संतुलनसु	श्री टी.कलानिधि, उपमहाप्रबंधक, दक्षिणी क्षेत्रीय लोड डिस्पैच सेंटर, POSOCO, बैंगलोर

पैनल चर्चा – एक अवलोकन

पवन ऊर्जा - विद्युत पूर्वानुमान और निर्धारण विषय पर आयोजित एक 3 दिवसीय अंतर्राष्ट्रीय कार्यशाला में परिनियामकों (मॉडरेटर्स) के द्वारा कार्यशाला के विषयों के सारांश के साथ पैनल चर्चा आरम्भ की गई, तदपश्चात प्रत्येक राज्य के उपस्थित SLDC के सदस्यों ने अपना परिचय दिया और उनके दृष्टिकोण में पवन ऊर्जा से एकीकरण ग्रिड में सामने आने वाली समस्याओं के समाधानों को साझा किया। अंत में परिनियामकों ने ऊर्जा के क्षेत्र में आने वाली समस्याओं के समाधान, सुझाव और योजनाएं प्रस्तुत कीं जिससे कि नवीकरणीय ऊर्जा के उत्पादन में वृद्धि की जा सके।

सुझाव

- संगठनों के मध्य आँकड़ों को साझा करने के क्रम में विनियमन बनाए जाएं;
 इस प्रक्रिया से अधिकृत संगठनों के द्वारा प्रभावी पूर्वानुमान और निर्धारण एक एकक के रूप में कार्य करेगा। इस प्रकार संतुलन बनाए रखने में भी सुविधा होगी।
- ऊर्जा उत्पादकों और ग्रिड प्रचालकों के द्वारा पूर्वानुमान किया जाए और प्रभावी पूर्वानुमान करने वाले ऊर्जा उत्पादकों को प्रोत्साहन प्रदान किया जाए।

- भारत के सभी राज्यों में आरईसी का विनियमन सुचारू रूप से रखा जाए,
 जो कि नवीकरणीय ऊर्जा के उत्पादन को प्रेरित करेगा।
- हरित कॉरिडोर शीघ्र ही प्रचलान कार्य करे, जिससे नवीकरणीय ऊर्जा के राज्यान्तरिक और अंतर्राज्यीय हस्तांतरण करने में सुविधा होगी।
- ऊर्जा उत्पादकों को सदैव मानक और सिफारिश किए गए ग्रिड कोड की सीमा पर WPP प्रचालन हेतु कहा जाए; इस प्रक्रिया से निर्बाध विद्युत आपूर्ति प्रदान की जा सकेगी।
- ग्रिड को ठोस प्रतिस्थापित किया जाए; इस प्रक्रिया से जिससे ग्रिड सुरक्षा
 प्राप्त की जा सकेगी।
- वर्तमान भारतीय ऊर्जा विपणन अब बाजार के माध्यम से ऊर्जा क्रय-विक्रय की अनुमति प्रदान करता है।
- भंडारण प्रणाली के विकास के लिए और अधिक समय की आवश्यकता है, केरल और कर्नाटक जैसे पड़ोसी राज्यों के जल विद्युत ऊर्जा के उपयोग की संभावना का विश्लेषण किया जाना चाहिए। जहाँ केरल और कर्नाटक राज्यों में उच्च जल विद्युत ऊर्जा क्षमता की संभावना है, वहीं तमिलनाडु राज्य में उच्च पवन ऊर्जा की क्षमता की संभावनाएं हैं।

पवन ऊर्जा टरबाइन परीक्षण

- मध्य प्रदेश राज्य के रतलाम जिले के रिचादेवड़ा क्षेत्र में मैसर्स एक्स्नॉन टेक्नोलॉजीज लिमिटेड कम्पनी के XYRON 1000 किलोवॉट के संयंत्र के संरचनात्मक ढाँचे का पवन ऊर्जा टरबाइन-प्रकार परीक्षण किया गया। मापन कार्य हटाया गया।
- तमिलनाडु राज्य के तिरुनेलवेली जिले, तेनकासी (तालुका), के कंपानेरी पुदुकुडी ग्राम में मैसर्स गरुड़ वायु शक्ति लिमिटेड कम्पनी के GVSL1700 किलोवॉट के पवन ऊर्जा टरबाइन-प्रकार परीक्षण किया गया। मापन कार्य पूर्ण कर लिया गया।
- गुजरात राज्य के अम्रेली जिला, बाबरा तालुक के किडि गाँव में मैसर्स आईनॉक्स 2000 किलोवॉट पवन ऊर्जा टरबाइन विद्युत वक्र मापन का कार्य और ब्लेड-उपकरणीकरण का कार्य प्रगति पर है।
- तमिलनाडु राज्य के डिंडीगल जिला, धारापुरम के समीप, वगरै ग्राम में मैसर्स रिगेन पावरटेक प्राइवेट लिमिटेड के रिगेन-1500 किलोवॉट पवन ऊर्जा टरबाइन विद्युत वक्र मापन का कार्य प्रगति पर है और अंतिम मापन कार्य त्वरा गति पवन ऊर्जा मौसम-2016 में पूर्ण किया जाएगा।

मानक और प्रमाणन

- विभिन्न पवन ऊर्जा टरबाइन निर्माताओं के द्वारा 50 से भी अधिक पवन ऊर्जा टरबाइन मॉडल्स के प्रलेखन / जानकारियाँ उपलब्ध करवाई गईं इन दस्तावेज़ों की समीक्षा / सत्यापन का कार्य और 'संशोधित मॉडल और निर्माताओं की सूची'(RLMM) तैयार की गई – एडेनडम-I सूची का कार्य पूर्ण किया गया।
- संशोधित मॉडल और निर्माताओं की सूची'(RLMM) तैयार करने की प्रक्रिया आरम्भ की गई और नवीन पवन ऊर्जा टरबाइन निर्माताओं के दस्तावेज़ों की समीक्षा / सत्यापन का कार्य किया गया।
- संशोधित मॉडल और निर्माताओं की सूची' (RLMM) समिति की बैठक आयोजित की गई।
- दिनांकित 03.02.2016 की 'संशोधित मॉडल और निर्माताओं की सूची'(RLMM) एडेनडम-। को दिनांकित 28.09.2015 की मुख्य सूची के साथ विभिन्न हितधारकों में ज़ारी किया गया, जिनमें पवन ऊर्जा टरबाइन निर्माता, राज्य विद्युत बोर्डस, TRANSCOS और राज्य नोडल एजेंसियाँ आदि भी हैं। दिनांकित 03.02.2016 की 'संशोधित मॉडल और निर्माताओं की सूची'(RLMM) एडेनडम-। को राष्ट्रीय पवन ऊर्जा संस्थान की वेबसाइट में भी अपलोड किया गया है।
- फरबरी 2016 तक अद्यनित की गई भारत में पवन ऊर्जा टरबाइन मॉडल और पवन ऊर्जा टरबाइन प्रकार प्रमाणन सिहत विपणन निर्माताओं की समेकित सूची तैयार गई और इसे राष्ट्रीय पवन ऊर्जा संस्थान की वेबसाइट में अपलोड किया गया है।

'पवन' - 48वां अंक जनवरी – मार्च 2016

- 16 फरबरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में मैसर्स टीयूवी राईनलैंड इंडस्ट्री सेवा GmbH, जर्मनी (TUVR जर्मनी) एवं मैसर्स टीयूवी राईनलैंड (इंडिया) प्राइवेट लिमिटेड (भारत) और राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई ने संयुक्त रूप से "भारत में पवन ऊर्जा टरबाइन के प्रमाणन रुझान, चुनौतियाँ और समाधान " विषय पर कार्यशाला का आयोजन किया।
- राष्ट्रीय पवन ऊर्जा संस्थान और मैसर्स टीयूवी राईनलैंड ने विभिन्न भारतीय पवन ऊर्जा टरबाइन निर्माताओं के साथ उनकी पवन ऊर्जा टरबाइन-प्रकार प्रमाणीकरण से जुड़ी हुई समस्याओं के संबंध में विस्तृत विचार-विमर्श किया।
- राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक डॉ एस गोमितिनायगम, और निदेशक एवं एकक प्रमुख श्री ए सेंथिल कुमार ने 'पवन ऊर्जा टरबाइन प्रमाणन: अब भारत में अंतरराष्ट्रीय स्तर पर मान्यता प्राप्त सेवाएं' और "पवन ऊर्जा टरबाइन प्रमाणन संस्था: टीयूवी राईनलैंड राष्ट्रीय पवन ऊर्जा संस्थान" क्रमशः विषय पर अपना प्रस्तुतीकरण दिया। उन्होंने टीयूवी राईनलैंड और राष्ट्रीय पवन ऊर्जा संस्थान की प्रमाणन सेवाएं प्राप्त करने के विभिन्न लाभ विस्तार से बताए। कार्यशाला में 'मैसर्स टीयूवी राईनलैंड इंडस्ट्री सेवाएं GmbH' के उत्पाद-प्रंबंधक श्री जय प्रकाश नारायण ने पवन ऊर्जा टरबाइन प्रमाणन के विभिन्न विषयों पर प्रस्तुतीकरण दिया। इसके अतिरिक्त पवन ऊर्जा टरबाइन-प्रकार परीक्षण के प्रभाग-प्रबंधक श्री एरिक एफरन ने "वैश्विक और भारतीय पवन ऊर्जा टरबाइन बाजार के लिए ग्रिड एकीकरण –विद्युत गुणवत्ता और LVRT मापन अभियान" विषय पर जर्मनी देश से वीडियो कॉन्फ्रेंस के माध्यम से अपनी प्रस्तुति दी।

"भारत में पवन ऊर्जा टरबाइन के प्रमाणन – रुझान, चुनौतियाँ और समाधान " विषय पर कार्यशाला

 राष्ट्रीय पवन ऊर्जा संस्थान IECRE की गतिविधियों के विषय में भारतीय मानक ब्यूरो के मुख्य प्रबंध निदेशक को तकनीकी सहायता उपलब्ध करवाता है। भारतीय मानक ब्यूरो को सूचित कर दिया गया है कि निम्नलिखित 2 आईईसी मानकों को भारतीय मानक के रूप में अपनाया गया है:

मैसर्स सदर्न विंड फॉर्म्स लिमिटेड कम्पनी को नवीकृत प्रमाणपत्र प्रदान करते हुए

- IEC 61400-21:2008, Ed2, पवन ऊर्जा टरबाइन- पार्ट 21: मापन और निर्धारण के ग्रिड से जुड़े विद्युत गुणवत्ता के विशिष्ट गुण।
- IEC 61400-24:2010, Ed1, पवन ऊर्जा टरबाइन- पार्ट 24: आकाशीय विद्युत से सुरक्षा।
- आगामी 'संशोधित मॉडल और निर्माताओं की सूची'(RLMM) एडेनडम-॥ सूची पर कार्य आरम्भ कर दिया गया है।
- मैसर्स आरआरबी इनर्जी लिमिटेड के पवन ऊर्जा टरबाइन मॉडल "V 39-500 किलोवॉट के 47 मीटर व्यास के रोटर" पर नवीकरण हेतु कार्य आरम्भ कर दिया गया है।
- नवीन और नवीकरणीय ऊर्जा मंत्रालय के दिशा-निर्देशों के अनुसार भारत में प्रोटोटाइप पवन ऊर्जा टरबाइन की संस्थापना के विषय में पवन ऊर्जा टरबाइन निर्माता से प्राप्त एक प्रोटोटाइप पवन ऊर्जा टरबाइन मॉडल के दस्तावेज की समीक्षा / सत्यापन करने हेतु अपेक्षित प्रोटोटाइप आवेदन फार्म प्रेषित किया गया।
- भारतीय मानक ब्यूरो (बीआईएस) के साथ समन्वय कार्य और पवन ऊर्जा टरबाइन से संबंधित गतिविधियों पर मसौदा तैयार करने के विषय पर कार्यसमूह के सदस्यों के द्वारा कार्य प्रगति पर है।
- गुणवत्ता प्रबंधन प्रणाली में निरंतर सुधार किए जाने संबंधी कार्य किए जा रहे हैं।
- मैसर्स टीयूवी राईनलैंड इंडस्ट्री सेवा GmbH, जर्मनी (TUVR जर्मनी) और मैसर्स टीयूवी राईनलैंड (इंडिया) प्राइवेट लिमिटेड (भारत) के अधिकारियों ने महानिदेशक एवं मानक और प्रमाणीकरण इकाई के अधिकारियों के साथ "भारत में पवन ऊर्जा टरबाइन के प्रमाणन – रुझान, चुनौतियां और समाधान "विषय पर कार्यशाला के आयोजन के संबंध में विस्तृत विचार-विमर्श किया।
- दिनांक 28 जनवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में श्री ए सेंथिल कुमार, निदेशक एवं एकक प्रमुख ने मैसर्स UL-DEWI के अधिकारियों, प्रबंध निदेशक श्री हेर्गन बोल्टे और व्यवसाय-प्रबंधक, दक्षिण एशिया-पवन ऊर्जा सेवाएं श्री सिद्धार्थ बी. नाइक के साथ आयोजित बैठक में और चर्चा में भाग लिया।

पवन ऊर्जा टरबाइन अनुसंधान स्टेशन

त्वरा गित पवन ऊर्जा मौसम-2016 के लिए, कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन' में, 4.4 मेगावॉट के पवन ऊर्जा विद्युत जनरेटर्स के गियर बॉक्स के गियर ऑयल, ट्रांसफार्मर यार्ड की तैयारी, नियंत्रण पैनल्स, विद्युत पैनल्स, सभी सेंसर्स की कार्यक्षमता की देखने, ट्रांसमीशन लाइनों की अनुकूलनता आदि और मशीनों के प्रचालन और रखरखाव का कार्य पूर्ण किया गया जिससे कि त्वरा गित पवन ऊर्जा मौसम-2016 में उत्पादित विद्युत को ग़िड़ में संचारित करने संबंधित कार्य सुचारू और निर्बाध रूप से कार्य करने रहें।

बैंगलोर स्थित मैसर्स SLRDC के द्वारा 600 किलोवॉट सुजलॉन पवन ऊर्जा जेनरेटर में पोर्टेबल फेज़र मापन (पीएमयू) इकाई (STER मार्क) कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन' में पवन ऊर्जा क्षणिक व्यवहार-प्रदर्शन के अध्ययन के एक भाग के रूप में पवन ऊर्जा टरबाइन–ग्रिड में संस्थापित किया गया। SLRDC बैंगलोर के द्वारा आवश्यक पैरामीटर जैसे कि वोल्टेज, विद्युत, आवृत्ति, विद्युत-उत्पन्न आदि को अध्ययन हेतु ऑन-लाइन एकत्रित किया जा रहा है।

तमिलनाडु राज्य में वेल्लूर स्थित वीआईटी द्वारा कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन' में 200 किलोवॉट मॉइकॉन में माइक्रो थ्रस्टर ऑगुमेंटेड की संस्थापना का कार्य प्रगति पर है। सिलिंडर की संस्थापना, पवन ऊर्जा टरबाइन क्षेत्र के नियंत्रक कक्ष में कम्प्रेसर और पवन ऊर्जा टरबाइन जनरेटर्स के अंदर दबाव पाइप बिछाने का कार्य प्रगति पर है।

200 किलोवॉट मॉइकॉन-पवन ऊर्जा टरबाइन जनरेटर्स में 75 किलोवॉट सौर पीवी विद्युत-ग्रिड एकीकरण का कार्य प्रगति पर है और भूमिगत विद्युत केबल के मूल को खोजने और पवन ऊर्जा टरबाइन क्षेत्र में सुदृढ़ संरचना की संस्थापना का कार्य पूर्ण किया गया और पवन ऊर्जा टरबाइन जनरेटर्स के साथ एकीकरण भाग (पीएलसी प्रोग्रामिंग) का कार्य पूर्ण किया गया।

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा लघु एवं दीर्घ पवन ऊर्जा टरबाइन परीक्षण, अनुसंधान एवं विकास और पवन ऊर्जा टरबाइन निर्धारण सुविधाओं की गतिविधियों और सेवाओं के विषय में जागरूकता प्रसारित करने एवं प्रदर्शन करने के उद्देशय से निम्नलिखित आगंतुकों के लिए अध्ययन-भ्रमण हेतु समन्वय कार्य आयोजित किया गया।

- 25 फरवरी 2016 को "पवन टरबाइन प्रौद्योगिकी एवं अनुप्रयोग" विषय के 17वें अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम के 20 प्रतिभागियों ने अध्ययन-भ्रमण किया।
- 29 फरवरी 2016 को तमिलनाडु राज्य में श्रीविलिपुत्तुर स्थित 'कैलाशिलंगम विश्वविद्यालय' के ऊर्जा अभियांत्रिकी विषय के 14 संकाय सदस्यों ने अध्ययन-भ्रमण किया।
- 19 मार्च 2016 को तमिलनाडु राज्य में कोयम्बटूर स्थित 'तमिलनाडु कृषि विश्वविद्यालय' के विद्युत इल्क्ट्रोनिक्स अभियांत्रिकी विषय के 48 विद्यार्थियों और 2 कार्मिकों ने अध्ययन-भ्रमण किया।

सूचना, प्रशिक्षण और अनुकूटित सेवाएं

१७ वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम

03 फरबरी से 01 मार्च 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान ने 28 दिवसीय "पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग" विषय पर 17वें अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम का सफलतापूर्वक आयोजन किया, इसमें पवन ऊर्जा, विद्युत से संबंधित विषयों को संबोधित किया गया जैसे पवन ऊर्जा और उसका परिचय, पवन ऊर्जा प्रौद्योगिकी, पवन ऊर्जा संसाधन निर्धारण, संस्थापना, प्रचालन और रखरखाव, पवन ऊर्जा क्षेत्रों के विभिन्न पहलु और सीडीएम लाभ के साथ वित्तीय विश्लेषण आदि। यह आईटीईसी / एससीएएपी (SCAAP) देशों के लिए विशेष प्रशिक्षण पाठ्यक्रम कार्यक्रम है; जो कि आईटीईसी / एससीएएपी (SCAAP) कार्यक्रम के अंतर्गत भारत सरकार, विदेश मंत्रालय, द्वारा प्रायोजित है और नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) द्वारा समर्थित है। यह भारत सरकार का एक विशेष कार्यक्रम है। इस विशेष प्रशिक्षण पाठ्यक्रम कार्यक्रम में 16 देशों (अजरबैजान, कंबोडिया, इथोपिया, गुयाना, केन्या, लेसोथो, मॉरीशस, म्यांमार, नाइजीरिया, ओमान, पराग्वे, फिलीपींस, सूडान, सीरिया, ट्यूनीशिया और उजबेकिस्तान) के 23 प्रतिभागियों ने भाग लिया।

प्रशिक्षण पाठ्यक्रम-सामग्री ज़ारी करते हुए।

प्रशिक्षण कार्यक्रम के 28 दिनों की अवधि में निर्धारित 45 कक्षा व्याख्यान राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों और बाहरी विशेषज्ञों, पवन ऊर्जा टरबाइन निर्माता, पवन ऊर्जा टरबाइन क्षेत्र विकासकर्ता, परामर्शदाता. शिक्षाविदों, उपयोगिता और आईपीपी अधिकारियों द्वारा दिए गए। सभी व्याख्याताओं को उनके क्षेत्रों में कई वर्षों का अनुभव था। सभी प्रतिभागियों को व्यावहारिक प्रशिक्षण अनुभव देने के लिए कॉयथर स्थित पवन ऊर्जा टरबाइन परीक्षण स्टेशन और पवन ऊर्जा टरबाइन अनुसंधान स्टेशन WTTS / WTRS में पवन ऊर्जा टरबाइन क्षेत्रों में भ्रमण हेत् ले जाया गया (i) ऑरोविल में लघु पवन ऊर्जा टरबाइन निर्माण प्रक्रिया कार्यशाला और व्यवाहारिक प्रशिक्षण। (ii) ममंलंदुर स्थित मैसर्स गमेशा विंड टरबाईन प्राइवेट लिमिटेड फैक्टरी में वृहद पवन ऊर्जा टरबाइन निर्माण प्रक्रिया (iii) चेन्नई में तारामणि स्थित संरचानत्मक अभियांत्रिकी अनुसंधान केंद्र (एसईआरसी) में पवन ऊर्जा सुरंग सुविधाएं (iv) चेन्नई स्थित राज्य विद्युत-भार प्रेषण केंद्र, विद्युत-भार प्रबंधन (v) WTTS / WTRS, कायथर स्थित लघु और वृहद पवन ऊर्जा टरबाइन परीक्षण की सुविधा (vi) कन्याकुमारी के आसपास विभिन्न पवन ऊर्जा टरबाइन क्षेत्रों में पवन ऊर्जा टरबाइन संबंधी ज्ञान और विभिन्न कार्य-निष्पादन प्रणाली। (vii) मैसर्स आरएस विंडटेक कंपनी में संचालन और रखरखाव प्रक्रियाओं का प्रबंधना, और (viii) मैसर्स अपोलो इंजीनियरिंग कंपनी में नियंत्रकों और ट्रांसफर्स आदि के ज्ञान अर्जन हेतु अध्ययन-भ्रमण किया।

भारतीय सौर-ऊर्जा निगम (एसईसी आई) के प्रबंध निदेशक डॉ अश्वनी कुमार इस अंतर्राष्ट्रीय प्रशिक्षण कार्यक्रम के समापन समारोह के मुख्य अतिथि थे, उन्होंने सभी प्रतिभागियों को पाठ्यक्रम प्रमाण-पत्र प्रदान किए।

प्रतिभागियों को प्रमाण-पत्र प्रदान करते हुए मुख्य अतिथि।

१९वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम

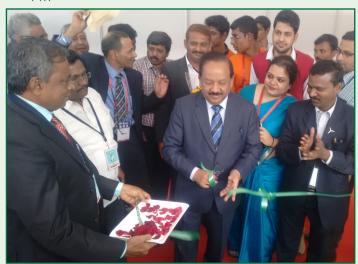
14 मार्च से 18 मार्च 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान ने "पवन ऊर्जा टरबाइन प्रौद्योगिकी" विषय पर 19वें राष्ट्रीय प्रशिक्षण कार्यक्रम का सफलतापूर्वक आयोजन किया। इस राष्ट्रीय प्रशिक्षण पाठ्यक्रम में 13 राज्यों के विविध पृष्ठभूमि के 38 प्रतिभागियों ने भाग लिया।

अन्ना विश्वविद्यालय में ऊर्जा अध्ययन संस्थान के निदेशक डॉ आर वेलराज उपर्युक्त कार्यक्रम के समापन समारोह के मुख्य अतिथि थे उन्होंने सभी प्रतिभागियों को प्रमाण-पत्र प्रदान किए।

प्रतिभागियों को प्रमाण-पत्र प्रदान करते हुए मुख्य अतिथि।

विद्यार्थियों का संस्थान में अध्ययन-भ्रमण

जनवरी से मार्च 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा पवन ऊर्जा की गतिविधियों और सेवाओं के विषय में जागरूकता प्रसारित करने के उद्देश्य से निम्नलिखित आगंतुकों के अध्ययन-भ्रमण हेतु समन्वय कार्यक्रम आयोजित किया गया। संस्थान के परिसर में नवीकरणीय ऊर्जा की सुविधाओं के विषय में विस्तार से प्रदर्शन किया गया।


- 27 जनवरी 2016 को तमिलनाडु राज्य में काटांकुलाथुर स्थित 'जेआरके ग्लोबल स्कूल' के 48 विद्यार्थियों और 5 कार्मिकों ने अध्ययन-भ्रमण किया।
- 7 मार्च 2016 को चेन्नई स्थित NITTTR के 5 अंतर्राष्ट्रीय प्रशिक्षण प्रतिभागियों ने अध्ययन-भ्रमण किया।
- 10 मार्च 2016 को तमिलनाडु राज्य में वेल्लूर स्थित 'वीआईटी' के 53 विद्यार्थियों और एक कार्मिक ने अध्ययन-भ्रमण किया।
- 23 मार्च 2016 को चेन्नई स्थित 'वेलटेक अभियांत्रिकी महाविद्यालय' के 85 विद्यार्थियों और 3 कार्मिकों ने अध्ययन-भ्रमण किया।
- इंटर्नशिप (गैर-आवासीय) परियोजना के लिए 4 विद्यार्थियों के आवेदन-पत्र संसाधित किए गए।
 - दिनांक 29 मार्च 2016 से 10 अप्रैल 2016 की अवधि में मॉरीशस
 देश के श्री त्यागराज मोडलै कुंदन को अपने शोध-परियोजना कार्य हेतु अनुमित प्रदान की गई।
 - दिनांक 14 मार्च 2016 से 22 अगस्त 2016 की अवधि में 6 माह के लिए मिस्र देश की सुश्री शाइमा अब्द अल्ला ओमरॉन को 'विकासशील देशों के वैज्ञानिकों के लिए अनुसंधान प्रशिक्षण फैलोशिप (आरटीएफ-डीसीएस)' के अंतर्गत प्रशिक्षण फेलोशिप हेतु अनुमति प्रदान की गई।
 - जर्मनी देश के ओल्डेनबर्ग विश्वविद्यालय से श्री कार्लोस गिरों को 2 महीने की अवधि के लिए अनुमित प्रदान की गई।
 - केंद्रीय विश्वविद्यालय, झारखंड के ऊर्जा अभियांत्रिकी केंद्र की सुश्री शिखा कुमारी को अनुमित प्रदान की गई।

 मीनाक्षी सुंदरराजन इंजीनियरिंग कॉलेज, चेन्नई के श्री सेतुरामन को अनुमित प्रदान की गई।

प्रदर्शनी

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा पवन ऊर्जा की गतिविधियों और सेवाओं के विषय में जागरूकता प्रसारित करने के उद्देश्य से निम्नलिखित प्रदर्शनियों में अपने कक्ष स्थापित किए गए और विविध विधाओं के आगंतुकों ने संस्थान की सेवाओं के बारे में जानकारी प्राप्त की।

 3 से 7 जनवरी 2016 की अविध में मैसुरु स्थित मैसूर विश्वविद्यालय में 103वीं भारतीय विज्ञान कांग्रेस एसोसिएशन द्वारा "भारत की शान-2016" प्रदर्शनी का आयोजन किया गया। माननीय केंद्रीय विज्ञान और प्रौद्योगिकी मंत्री डॉ हर्षवर्द्धन के द्वारा प्रदर्शनी-कक्षों का उद्घाटन किया गया।

माननीय केंद्रीय विज्ञान और प्रौद्योगिकी मंत्री डॉ हर्षवर्द्धन प्रदर्शनी-कक्ष का उद्घाटन करते हुए।

 26 से 29 जनवरी 2016 की अवधि में चेन्नई स्थित साइंस सिटी में 'वार्षिक महान विज्ञान महोत्सव' में प्रदर्शनी-कक्ष स्थापित किया गया।

अभियांत्रिकी सेवा प्रभाग

- दृश्य-श्रव्य सम्मेलन कक्ष: दिनांक 18 फरबरी 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव के द्वारा रा.प.ऊ.संस्थान में दृश्य-श्रव्य सम्मेलन प्रणाली कक्ष का विधिवत उद्घाटन किया गया।
- 15 किलोवॉट सौर ऊर्जा एसपीवी उत्पादन संयंत्र: जनवरी से फरवरी 2016 माह की अविध में 15 किलोवॉट एसपीवी संयंत्र (विद्युत) से 2707 किलोवॉट-घंटे (ऊर्जा) उत्पादन किया गया, और संचित उत्पादन 101.18 किलोवॉट-घंटे (ऊर्जा) किया गया।
- 30 किलोवॉट सौर ऊर्जा एसपीवी उत्पादन संयंत्र: जनवरी से फरवरी 2016 माह की अविध में 30 किलोवॉट एसपीवी संयंत्र (विद्युत) से 6129.3 किलोवॉट-घंटे (ऊर्जा) उत्पादन किया गया, और संचित उत्पादन 39.22 किलोवॉट-घंटे (ऊर्जा) किया गया।
- लैन नेटवर्किंग: कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में 'लैन (LAN) नेटवर्किंग पुनर्गठन' कार्य प्रगति पर है।
- केंद्रीय लोक निर्माण विभाग सिविल कार्य: केंद्रीय लोक निर्माण विभाग (सीपीडब्ल्यूडी) द्वारा (i) राष्ट्रीय पवन ऊर्जा संस्थान परिसर के सामने की दीवार के मुख्य प्रवेश द्वार पर कांस्य के अक्षरों से त्रीभाषी

(तमिल-हिंदी-अंग्रेजी) नाम-बोर्ड बनाया गया यह कार्य नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव महोदय के संस्थान-आगमन से पूर्व पूर्ण किया गया। (ii) रा.प.ऊ. संस्थान के सूचना, प्रशिक्षण और अनुकूलित सेवा एकक हेतु एक कक्ष निर्माण और राष्ट्रीय पवन ऊर्जा संस्थान परिसर की नवीन दीवार के निर्माण कार्य हेतु अनुमित प्रदान कर दी गई है; केंद्रीय लोक निर्माण विभाग (सीपीडब्ल्यूडी) के द्वारा शीघ्र ही इस कार्य के आरम्भ करने की संभावना है। (iii) रा.प.ऊ. संस्थान के मुख्य प्रवेश द्वार के समीप सुरक्षा-गार्द कक्ष का निर्माण कार्य (iv) रा.प.ऊ. संस्थान के परिसर के पृष्ठ-भाग की ओर नई दीवार निर्माण कार्य प्रगति पर है।

सामान्य रखरखाव कार्य:

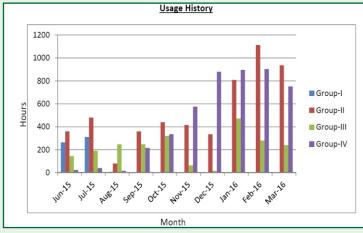
- i) उपयोज्यता भवन में भंडार कक्ष और कार्मिक कक्ष के सिविल निर्माण का कार्य प्रगति पर है।
- ii) 55 किलोवॉट नैसले (Nacelle) हेतु शीर्ष-छत हेतु निर्माण कार्य और वाहन-चालक कक्ष निर्माण कार्य प्रगति पर है।
- 25 से 27 फरवरी 2016 की अविध में कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन' में नेटवर्किंग कार्य की समीक्षा की गई।

ज्ञान- हस्तातंरण और प्रबंधन

राष्ट्रीय पवन ऊर्जा संस्थान में 'प्रौद्योगिकी मनन मंथन' (TTT) मंच की पहल से प्रौद्योगिकी ज्ञान-हस्तातंरण एक निरंतर प्रक्रिया बनी है। वर्तमान तिमाही में, 'प्रौद्योगिकी मनन मंथन' मंच में राष्ट्रीय पवन ऊर्जा संस्थान के कार्मिकों का एक समूह उभर कर सामने आया है जिसमें उन्होंने नए-नए चुर्निंदा विषयों को सबके सामने मनन-मंथन हेतु प्रस्तुत किया है। वक्ताओं के द्वारा राष्ट्रीय पवन ऊर्जा संस्थान में सभी के लाभ के लिए संवेदनशील नए विषयों को प्रस्तुत किया गया। राष्ट्रीय पवन ऊर्जा संस्थान में परिसर के सभागार में इस साप्ताहिक सभा की प्रत्येक वृहस्पतिवार को मस्तिष्क में मनन-मंथन करते हुए उत्सुकता से उत्साह के साथ प्रतिक्षा की जाती है और वे इसमें उत्साह से भाग लेते हैं।

'प्रौद्योगिकी मनन मंथन' (TTT) व्याख्यान-सत्र का एक दृश्य

राष्ट्रीय पवन ऊर्जा संस्थान के संसाधन कर्मियों ने भारत के उज्जवल एवं स्थिर भविष्य के लिए विद्युत ग्रिड और सांइक्रो फेज़र जैसे विषयों पर अपना ज्ञान साझा किया। ऊर्जा के सतत और आशा के अनुरूप स्रोत के रूप में लहरें और ज्वारीय ऊर्जा पर आयोजित सत्र में प्रतिभागियों द्वारा विचार- विमर्श और उत्साह प्रंशसनीय था। वक्ता के द्वारा तुलनात्मक विश्लेषण के लिए उपग्रह और सौर विकिरण संसाधन निर्धारण के आँकड़ों की सहायता से सौर ऊर्जा


प्रशिक्षण कार्यक्रम का एक दृश्य

पूर्वानुमान का विश्लेषणात्मक अध्ययन सत्र बहुत सराहनीय था। पवन ऊर्जा पोर्टल क्षेत्र के युवा अभियंताओं के लिए केंद्रीय विद्युत नियामक आयोग के कामकाज और भारतीय विद्युत ग्रिड संहिता का सत्र काफी ज्ञानवर्द्धक था।

राष्ट्रीय पवन ऊर्जा संस्थान के ज्ञान-हस्तातंरण और प्रबंधन एकक ने कौशल संवारने की पहल के अंतर्गत अपने अभियंताओं के लिए, एक अत्याधुनिक विद्युत प्रणाली विश्लेषण पैकेज में, एक त्री-दिवसीय प्रशिक्षण कार्यक्रम आयोजित किया। यह प्रशिक्षण कार्यक्रम राष्ट्रीय पवन ऊर्जा संस्थान में दिनांक 27 से 29 जनवरी 2016 की अविध में आयोजित किया गया। अभियंताओं को केंद्रीकृत आँकड़ों के साथ शीर्ष पायदान विंडोज जीयूआई के माध्यम से विद्युत प्रणाली विश्लेषण अध्ययन की एक विस्तृत श्रृंखला के माध्यम से प्रशिक्षित करवाया गया। प्रशिक्षण की अविध में सभी प्रतिभागी अत्यंत गंभीरता और सिहिष्णुता के साथ, क्षणिक और विद्युत चुंबकीय क्षणिक विश्लेषण प्रदर्शन करने में सक्षम हुए।

अभियंताओं के उपयोग के लिए कार्य समूह की सुविधा प्रदान की जा रही है जो कि एक सफल प्रयास सिद्ध हो रहा है। उपयोग के प्रोफ़ाइल का मानचित्र एक सूक्ष्म रिकार्ड हेतु रखा गया जो कि निम्नवत संकलित किया गया है। राष्ट्रीय पवन ऊर्जा संस्थान में अपने हितधारकों को प्रदर्शित करने कौशल को सुधारने हेतु कार्य-समूह के द्वारा विभिन्न नवीनतम नवीकरणीय सॉफ्टवेयर में सफल प्रयास किया जा रहा है।

सॉफटवेयर - समूह

समूह – प्रथम: पवन ऊर्जा टरबाइन संसाधन एवं

निर्धारण और पवन ऊर्जा टरबाइन

क्षेत्र योजना

समूह - द्वितीय: पवन ऊर्जा टरबाइन - एयरो

मैकेनिकल डिज़ाइन

समूह – तृतीय: विद्युत और एल्क्ट्रोनिक्स और

ग्रिड विद्युत गुणवत्ता

समूह - चतुर्थ: कम्प्यूटेशनल विश्लेषण और सिमुलेशन

उपयोग-इतिहास

राष्ट्रीय पवन ऊर्जा संस्थान के खुला-दिवस के अवसर पर वर्तमान में आयोजित उत्सव के अवसर पर इस सुविधा को भी दर्शकों के लिए प्रदर्शित किया गया। सभी प्रबुद्ध एकेडेमिया समूहों ने इस कार्य-समूह की कार्य-घटनाओं में विशेष दिलचस्पी दिखाई।

सौर ऊर्जा विकिरण संसाधन निर्धारण

- 18 सौर ऊर्जा विकिरण संसाधन निर्धारण के गुणवत्ता नियंत्रण आँकड़ों की SDSAP नीति के अंतर्गत आपूर्ति की गई।
- सौर ऊर्जा विकिरण संसाधन निर्धारण एकक के आंतरिक उपयोग हेतु
 14 पॉइनोमीटर और 7 फॉइलोमीटरों का अंशाकंन-कार्य किया गया।
 और 8 फॉइलोमीटर एवं एक पॉइनोमीटर का वाणिज्यिक परियोजना के अंतर्गत कार्य किया गया।
- एक वर्ष की अवधि की परामर्शी परियोजना की 2 MEDA-SRRA स्टेशनों की रिपोर्ट का मसौदा MEDA को प्रेषित किया गया।
- 18 जनवरी 2016 को भुवनेश्वर SRRA स्टेशन को पुनः
 स्थानांतरित करने हेतु भारतीय प्रौद्योगिकी संस्थान भुवनेश्वर में
 माइक्रोसिटिंग कार्य किया गया।
- 15 से 18 फरवरी 2016 की अविध में 'सार्वजनिक निजी भागीदारी मॉडल (पीपीपी मोड)' के अंतर्गत एक "छत पर पीवी प्रणाली: अभिकल्प और स्थापना" विषय पर प्रशिक्षण कार्यक्रम "मैसर्स जी एस ई एस, नई दिल्ली के माध्यम से राष्ट्रीय पवन ऊर्जा संस्थान में आयोजित किया गया।
- महाराष्ट्र राज्य के 4 क्षेत्रों के लिए विस्तृत परियोजना रिपोर्ट (डीपीआर) का परियोजना प्रस्ताव MEDA को प्रेषित किया गया।
- 11 और 12 फरबरी 2016 की अवधि में MEDA के अधिकारियों के लिए 'सौर ऊर्जा संसाधन निर्धारण और आँकड़ों का विश्लेषण एवं प्रचालन तथा रखरखाव' विषय पर पुणे में प्रशिक्षण कार्यक्रम आयोजित किया गया।

- गाँधीनगर स्थित SRRA / AMS स्टेशन को पंडित दीनदयाल पैट्रोलियम विश्वविद्यालय (पीडीपीयू) में पुनः स्थानांतरित किया गया।
- 26 फरवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में 'मूल्य निर्धारण समिति' (पीएफसी) की 'प्रति सोलर ऊर्जा आँकड़ा हस्तांतरण और अभिगम्यता नीति' (SDSAP) की समीक्षा करने और कीमतें तय करने हेतु बैठक आयोजित की गई।
- 02 से 04 फरवरी 2016 की अविध में श्री आर कार्तिक और दो परियोजना अभियंताओं ने सौर ऊर्जा पूर्वानुमान हेतु अधिकारियों के साथ चर्चा करने हेतु SRLDC-बेंगलुरू का भ्रमण किया।
- राष्ट्रीय प्रौद्योगिकी संस्थान-गोवा के 3संकायों सदस्य और GERMI-गांधी नगर के एक वैज्ञानिक ने सहयोगी कार्यक्रम पर चर्चा करने हेतु राष्ट्रीय पवन ऊर्जा संस्थान का भ्रमण किया।
- 19 और 20 फरवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान के अधिकारीगण, राष्ट्रीय प्रौद्योगिकी संस्थान-गोवा के संकाय सदस्यों और GERMI-गांधी नगर के वैज्ञानिकों ने सहयोगी कार्यक्रम पर चर्चा करने हेतु पांडिचेरी स्थित स्मार्ट ग्रिड परियोजना स्थल और तिरूवल्लुर स्थित PITAM SRRA स्थापना क्षेत्रों का अध्य्यन-भ्रमण किया।
- 20 जनवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में सौर ऊर्जा पूर्वानुमान विषय पर जीआईजेड अधिकारियों के साथ बैठक आयोजित की गई।

राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों द्वारा बाह्य मंचो में आमंत्रित व्याख्यान /बैठकों में प्रतिभागिता

डॉ एस गोमतिनायगम, महानिदेशक

- 4 जनवरी 2016 को मैसूर में आयोजित 103वीं भारतीय विज्ञान कांग्रेस अधिवेशन में नवीन और नवीकरणीय ऊर्जा मंत्रालय के प्रतिनिधि के रूप में पैनल-सदस्य और प्रस्तुतीकरण।
- 13 जनवरी 2016 को नई दिल्ली में द्वितीय नवीकरणीय ऊर्जा वैश्विक निवेशक सम्मेलन और प्रदर्शनी (RE-INVEST) की संचालन समिति और बैठक में भाग लिया।
- 20 जनवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में जीआईजेड के साथ बैठक।
- 23 जनवरी 2016 को चेन्नई स्थित वी.आई.टी विश्वविद्यालय में आयोजित श्री एम नटेशन की प्रथम डॉक्टरेट समिति की बैठक में भाग लिया।
- 25 जनवरी 2016 को नई दिल्ली स्थित राष्ट्रीय सौर ऊर्जा संस्थान परिसर में ही "अंतर्राष्ट्रीय सौर-ऊर्जा गठबंधन (आईएसए) सचिवालय भवन" की स्थापना के समारोह-कार्यक्रम में भाग लिया।
- 28 जनवरी 2016 को बिट्स पिलानी, हैदराबाद में आयोजित अंतर्राष्ट्रीय कार्यशाला में "पवन ऊर्जा अभियांत्रिकी और पवन ऊर्जा" विषय पर व्याख्यान दिया।
- 01 फरवरी 2016 को RLMM बैठक की अध्यक्षता की।
- 05 फरवरी 2016 को बेंगलुरू में केंद्रीय विद्युत प्राधिकरण, दक्षिणी क्षेत्र विद्युत समिति में दायर की गई याचिका के संबंध में माननीय सीईआरसी के आदेश के अनुपालन पर आयोजित बैठक में भाग लिया।
- 19 फरवरी 2016 को त्रिपाठी में आयोजित एसपीसी ऊर्जा विषय पर विद्युत, कोयला, नवीन और नवीकरणीय ऊर्जा मंत्रालय के माननीय केंद्रीय मंत्री श्री पीयूष गोयल जी की अध्यक्षता में आयोजित बैठक में भाग लिया।
- 22 फरवरी 2016 को तिमलनाडु स्थित त्रिची में राष्ट्रीय प्रौद्योगिकी संस्थान में आयोजित 'आपदा अल्पीकरण प्रबंधन और सतत विकास जोखिम न्यूनीकरण' विषय पर आयोजित अंतर्राष्ट्रीय सम्मेलन में मुख्य अतिथि के रूप में आमंत्रित और उद्घाटन भाषण दिया।
- 25 फरवरी 2016 को टीयूवी राईनलैंड के साथ आईनॉक्स, दिल्ली में बैठक।
- 02 मार्च 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में आयोजित 12 वीं 'लघु पवन ऊर्जा टरबाइन पैनल समिति' की बैठक की अध्यक्षता।
- 05 मार्च 2016 को NIWE, NISE और NIBE के लिए भर्ती नियमों की समीक्षा हेतु गठित समिति की प्रथम बैठक में भाग लिया।
- 09 मार्च 2016 को नई दिल्ली में नवीन और नवीकरणीय ऊर्जा मंत्रालय में आयोजित समीक्षा बैठक में भाग लिया।

- 09 मार्च 2016 को नई दिल्ली स्थित नवीन और नवीकरणीय ऊर्जा मंत्रालय में आयोजित राष्ट्रीय पवन ऊर्जा संस्थान की 37वीं शासी-परिषद की बैठक में भाग लिया।
- 09 मार्च 2016 को सुदूर / ऑनलाइन निगरानी के लिए ग्रिड से जुड़ी सौर-ऊर्जा छत के लिए 'केंद्रीकृत निगरानी प्रणाली (सीएमएस)' की संस्थापना हेतु परामर्श बैठक में भाग लिया।
- 23 मार्च 2016 को तमिलनाडु के एम.आई.टी महाविद्यालय में डॉक्टरेट समिति की बैठक में भाग लिया।
- 29 मार्च 2016 को तिमलनाडु स्थित एस.आई.टी अभियांत्रिकी महाविद्यालय के साथ एक समझौता-ज्ञापन पर हस्ताक्षर किए तदुपरांत "विद्युत और ऊर्जा प्रणाली हेतु उत्कृष्टता केंद्र" के उद्घाटन समारोह में मुख्य अतिथि।
- 30 मार्च 2016 को नई दिल्ली में जी.ई. की अत्याधुनिक 'पवन ऊर्जा टरबाइन और डिज़िटल पवन ऊर्जा टरबाइन क्षेत्र' का शुभारंभ किया।

डॉ राजेश कत्याल, उप महानिदेशक और एकक प्रमुख, OSWH & IB

- 03 फरवरी 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय नई दिल्ली में यूरोपीय संघ के प्रतिनिधियों "भारतीय परियोजना में स्वच्छ ऊर्जा सहयोग के अंतर्गत भारत में प्रथम अपतटीय पवन ऊर्जा टरबाइन क्षेत्र की संस्थापना हेतु तकनीकी सहायता" विषय पर आयोजित बैठक में भाग लिया।
- 04 फरवरी 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय नई दिल्ली में आयोजित "कर्नाटक राज्य और इंट्रा राज्य जीईसी की वर्तमान स्थिति के लिए ड्राफ्ट आरईएमसी डीपीआर" विषय पर आयोजित बैठक में भाग लिया।
- 15 फरवरी 2016 को गुवाहाटी में असम ऊर्जा विकास एजेंसी के साथ 'दूरसंचार टॉवर हेतु लघु पवन ऊर्जा टरबाइन' विषय पर चर्चा हेतु आयोजित बैठक में भाग लिया।

के. भूपति, अपर निदेशक एवं एकक प्रमुख, WRA

- 04 मार्च 2016 को मानित विश्वविद्यालय गांधी ग्राम ग्रामीण संस्थान में "पवन ऊर्जा संसाधन निर्धारण और तकनीक" विषय पर व्याख्यान दिया।
- 09 मार्च 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय नई दिल्ली में शासी-परिषद की बैठक में भाग लिया।
- 10 मार्च 2016 को हैदराबाद में आंध्र प्रदेश विद्युत उत्पादन कॉरपोरेशन लिमिटेड की प्री-बिड बैठक में भाग लिया।
- 22 मार्च 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय नई दिल्ली में "भारत में अपतटीय पवन ऊर्जा उद्योग का विकास" विषय पर आयोजित कार्यशाला में भाग लिया।

- 23 मार्च 2016 को चेन्नई स्थित 'सेंट जोसेफ अभियांत्रिकी महाविद्यालय'
 में "ऊर्जा संयंत्र में उपकरणीकरण" विषय पर व्याख्यान दिया।
- 24 मार्च 2016 को चेन्नई स्थित 'आनंद उच्च प्रौद्योगिकी संस्थान' में "ऊर्जा संयंत्र में उपकरणीकरण" विषय पर व्याख्यान दिया।

ए.जी. रंगराज, सहायक निदेशक (तकनीकी), WRA

- 12 जनवरी 2016 को तमिलनाडु बिजली बोर्ड में दक्षिणी क्षेत्र में ग्रिड एकीकरण के संदर्भ में आयोजित की गई समीक्षा समिति की बैठक में भाग लिया।
- 05 फरवरी 2016 को बेंगलुरू में केंद्रीय विद्युत प्राधिकरण, दक्षिणी क्षेत्र विद्युत समिति में दायर की गई याचिका के संबंध में माननीय सीईआरसी के आदेश के अनुपालन पर आयोजित बैठक में भाग लिया।
- 16 फरवरी 2016 को तमिलनाडु विद्युत बोर्ड में पवन ऊर्जा पूर्वानुमान सेवा विषय पर SR/ REMC के साथ चर्चा / आयोजित बैठक में भाग लिया।
- 24 फरवरी 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय नई दिल्ली में संयुक्त सचिव के द्वारा REMC के गठन के संदर्भ में आयोजित बैठक में और पीजीसीआईएल के मुख्य प्रबंधक श्री किशश भाम्भानी के साथ आयोजित प्रारंभिक बैठक में भाग लिया।

ए. सेंथिल कुमार, निदेशक एवं एकक प्रमुख, S&C

 17 से 19 फरवरी 2016 की अवधि में नवीन और नवीकरणीय ऊर्जा मंत्रालय, नई दिल्ली में " सामग्री का बिल (बीओएम) मूल्यांकन / अनुमोदन समिति" के लिए 'विशेष अतिरिक्त ड्यूटी (SAD) और उसके घटकों के निर्माताओं (WOEG) के लिए EDEC प्रमाणपत्र ज़ारी करने हेत आयोजित बैठक में भाग लिया।

ए. सेंथिल कुमार, निदेशक एवं एकक प्रमुख, S&C और एस. अरुलसेल्वन, सहायक अभियंता

 05 फरवरी 2016 को बेंगलुरू में केंद्रीय विद्युत प्राधिकरण, दक्षिणी क्षेत्र विद्युत समिति में दायर की गई याचिका के संबंध में माननीय सीईआरसी के आदेश के अनुपालन पर आयोजित बैठक में भाग लिया।

पी. कनगवेल, अपर निदेशक एवं एकक प्रमुख, ITCS

- 29 जनवरी, 2016 तमिलनाडु के त्रिची स्थित 'बिशप हेबर महाविद्यालय' के स्नातकोत्तर और पुस्तकालय तथा अनुसंधान एवं सूचना विज्ञान विभाग द्वारा "कौशल निर्माण" विषय आयोजित एक दिवसीय कार्यशाला में "हरित पुस्तकालय" विषय पर व्याख्यान दिया।
- 30 जनवरी, 2016 तमिलनाडु के त्रिची स्थित 'सेंट जोसेफ महाविद्यालय' के पुस्तकालय में "रेव.फ़ादर एस लेज़र इनडोवमेंट सम्मेलन" में "अनुसंधान उत्पादकता और डिजिटल दृश्यता" विषय पर आयोजित सम्मेलन में "प्रबुद्धता सूचना पद्धति और प्रतिमान" विषय व्याख्यान दिया।

- 10 फरवरी 2016 को चेन्नई स्थित 'श्री शंकरा विद्याश्रम मैट्रिकुलेशन हायर सेकेंडरी स्कूल' में "नवीकरणीय ऊर्जा" विषय पर व्याख्यान दिया।
- 25 फरवरी 2016 को तमिलनाडु में काट्टानकुलाथूर स्थित 'एसआरएम विश्वविद्यालय' में "पवन ऊर्जा प्रौद्योगिकी के क्षेत्र में अनुसंधान के अवसर' विषय पर व्याख्यान दिया।
- 4 और 5 मार्च 2016 की अवधि में तमिलनाडु में डिंडीगल स्थित 'गांधीग्राम ग्रामीण संस्थान' में नवीकरणीय ऊर्जा विषय के एम टेक के विद्यार्थियों के समक्ष व्याख्यान दिया।
- 28 मार्च 2016 को तमिलनाडु में सेलम स्थित 'पेरियार विश्वविद्यालय'
 के "नवीन और नवीकरणीय ऊर्जा अध्ययन केंद्र' में ऊर्जा, पर्यावरण और वैकल्पिक ऊर्जा पर इसके प्रभाव और उपयोग के संदर्भ में "पवन ऊर्जा टरबाइन प्रौद्योगिकी एवं अनुप्रयोग" विषय पर व्याख्यान दिया।

जॉयल फ्रेंन्कालिन असॉरिया, अपर निदेशक, ITCS

 4 और 5 मार्च 2016 की अवधि में तमिलनाडु में डिंडीगल स्थित 'गांधीग्राम ग्रामीण संस्थान' में नवीकरणीय ऊर्जा विषय के एम टेक के विद्यार्थियों के समक्ष व्याख्यान दिया।

एम अनवर अली, अपर निदेशक एवं एकक प्रमुख, ESD

- 19 और 20 फरबरी 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान द्वारा आयोजित '17वें अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम' के प्रशिक्षणार्थियों के लिए समन्वय किया और उन्हें पुदुच्चेरी में अध्ययन-भ्रमण हेतु ले जाया गया।
- 25 और 27 फरबरी 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान द्वारा आयोजित अंतर्राष्ट्रीय प्रतिभागियों के लिए समन्वय कार्य किया और उन्हें कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में 'ऑयानारुत्थु एसएस वास्तविक समय-निगरानी और वीसी प्रणाली निरीक्षण करवाया गया और कन्याकुमारी में अध्ययन-भ्रमण हेतु ले जाया गया।

डॉ जी गिरिधर, उप महानिदेशक एवं एकक प्रमुख, SRRA

- 22 जनवरी 2016 को कोयंबटूर स्थित कृषि महाविद्यालय द्वारा आयोजित सम्मेलन के मुख्य अतिथि।
- 25 जनवरी 2016 को नई दिल्ली स्थित राष्ट्रीय सौर ऊर्जा संस्थान परिसर में "अंतर्राष्ट्रीय सौर-ऊर्जा गठबंधन (आईएसए) सचिवालय भवन" की स्थापना के समारोह-कार्यक्रम में भाग लिया।
- 11 मार्च 2016 को अंतरिम प्रशासनिक सेल (आईसीए) और आई एस ए की तृतीय बैठक में भाग लिया और SECI के महा प्रबंधक डॉ अश्विनी कुमार के साथ चर्चा की।
- 15 मार्च 2016 को एनपीटीआई, बेंगलुरू में "सौर ऊर्जा विकिरण संसाधन निर्धरण" विषय पर व्याख्यान दिया।

प्रसून कुमार दास, सहायक निदेशक (तकनीकी) अनुबंध, SRRA

 15 मार्च 2016 को एनपीटीआई, बेंगलुरू में "सौर ऊर्जा विकिरण संसाधन निर्धरण" विषय पर व्याख्यान दिया।

'पवन' - 48वां अंक जनवरी – मार्च 2016

आर कार्तिक, सहायक निदेशक (तकनीकी) अनुबंध, SRRA

 20 जनवरी 2016 को मैसुरु स्थित 'एन ई प्रौद्योगिकी संस्थान' में "सौर ऊर्जा विकिरण निर्धारण" विषय पर व्याख्यान दिया।

१०३वीं भारतीय विज्ञान कांग्रेस प्रदर्शनी

एम अनवर अली, जे सी डेविड सोलोमोन और डॉ पी कनगवेल ने 03 से 07 जनवरी 2016 की अवधि में मैसूर में आयोजित 103वें भारतीय विज्ञान कांग्रेस अधिवेशन में राष्ट्रीय पवन ऊर्जा संस्थान के प्रदर्शनी-कक्ष की स्थापना और प्रबंधन का कार्य किया।

विदेश भ्रमण

डॉ एस गोमितनायगम, महानिदेशक, राष्ट्रीय पवन ऊर्जा संस्थान और श्री ए सेंथिल कुमार, निदेशक एवं मानक और प्रमाणन एकक प्रमुख ने जर्मनी देश के ब्रेमरहेवन स्थित मैसर्स फ्राहन्होफर पवन ऊर्जा और ऊर्जा प्रणाली प्रौद्योगिकी संस्थान IWES के अधिकारियों के साथ आयोजित बैठक में भाग लिया। जर्मनी देश में कोलोन स्थित मैसर्स टीयूवी रॉइनलेंड इंडस्ट्री सेवा GmbH के अधिकारियों के साथ आयोजित "बर्लिन ऊर्जा संक्रमण वार्ता-2016" विषय पर आयोजित बैठक में भाग लिया।

के. भूपति, अपर निदेशक एवं एकक प्रमुख, WRA

- 18 जनवरी 2016 को अबू धाबी में अंतर्राष्ट्रीय नवीकरणीय ऊर्जा एजेंसी (IRENA) द्वारा आयोजित "वर्ल्ड फ्यूचर एनर्जी समिट – ग्लोबल एटलस वर्कशॉप" में भाग लिया।
- 16 से 18 फरवरी 2016 की अविध में बैंकॉक में यूएसजी के सहयोग से यूएसईए के द्वारा "पवन ऊर्जा पूर्वानुमान – तिमलनाडु में संयंत्र" विषय पर आयोजित कार्यशाला में 'पवन ऊर्जा और सौर ऊर्जा पूर्वानुमान को

- गतिमान नवीकरणीय ऊर्जा के एकीकरण की सुविधा को ग्रिड के साथ अद्यनित करना' विषय पर शोध-पत्र प्रस्तुत किया/ व्याख्यान दिया।
- के. भूपित, अपर निदेशक एवं एकक प्रमुख, WRA और श्री बी कृष्णन, सहायक अभियंता ने 17 से 20 मार्च 2016 की अविध में श्रीलंका देश के कोलंबो क्षेत्र में 10 मेगावॉट पवन ऊर्जा टरबाइन हेतु वहाँ की भूमि-वास्तविकता सत्यापन हेतु अध्य्यन-भ्रमण किया।
- प्रसून कुमार दास ने अबू धाबी में 17 से 19 जनवरी 2016 की अविध में IRENA द्वारा "ग्लोबल एटलस मिडियम-टरम स्ट्रेटेजी" विषय पर आयोजित कार्यशाला में भाग लिया।

प्रकाशन

- एस गोमितनायगम, के भूपित और एजी रंगराज द्वारा "निर्धारण और पूर्वानुमान राष्ट्रीय पवन ऊर्जा संस्थान के अनुभव, IWTMA-पत्रिका,vol.1,संख्या 5 पीपी 20-21।
- जी अरिवुक्कोडि, एस गोमितनायगम और एस कनमणि द्वारा "ऊर्जा संसाधन और पर्यावरण प्रौद्योगिकी-2016 विषय पर विश्व सम्मेलन" में "पवन ऊर्जा टरबाइन हेतु क्षेत्र मापन और ध्विन प्रसारण भारत में दिशा-निर्देश" विषय पर शोध-पत्र प्रस्तुत।

पुरस्कार

06 मार्च 2016 को राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक को चेन्नई के मैलापुर में पूर्व मादा स्ट्रीट, स्थित भारतीय विद्या भवन में भारत के उच्च न्यायालाय के पूर्व महान्यायाधीश सम्मानीय श्री गुणशीलन के करकमलों से "अरिवियल कळज़ियम पुरस्कार" प्रदान किया गया।

	प्रशिक्षण कैलेंडर – वर्ष २०१६-१७				
राष्ट्रीय प्रशिक्षण पाठ्यक्रम					
क्र.सं.	विषय	दिनांक से	दिनांक तक	अवधि	
1.	20वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम, "विषय: पवन ऊर्जा प्रौद्योगिकी"	07.11.2016	11.11.2016	5 दिवस	
2.	21वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम, "विषय: पवन ऊर्जा प्रौद्योगिकी"	20.03.2017	24.03.2017	5 दिवस	
अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम					
क्र.सं.	विषय	दिनांक से	दिनांक तक	अवधि	
1.	18वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम, ITEC/ SCAAPP भागीदार देशों के लिए, "विषय: पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग"	17.08.2016	09.09.2016	24 दिवस	
	19वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम, ITEC/ SCAAPP भागीदार देशों के लिए, "विषय: पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग"	01.02.2017	28.02.2017	28 दिवस	

03 फरबरी से 01 मार्च 2016 की अवधि में "पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग " विषय पर 17वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम और

१४ से १८ मार्च २०१६ की अवधि में "पवन ऊर्जा प्रौद्योगिकी " विषय पर १९वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम

राष्ट्रीय पवन ऊर्जा संस्थान के निम्नितिखित कार्मिकों ने न्याख्यान दिया।

क्र.सं.	व्याख्यान –विषय	वक्ता
01	पवन ऊर्जा प्रौद्योगिकी की स्थिति और परिचय	
	पवन ऊर्जा टरबाइन टॉवर संकल्पना	डॉ एस गोमतीनायगम
02	पवन ऊर्जा संसाधन निर्धारण और तकनीक	of the same
	पवन और ऊर्जा उत्पादन का पूर्वानुमान	श्री के भूपति
03	पवन ऊर्जा टरबाइन मापन के दिशा-निर्देश	श्री ए जी रंगराज
	पवन ऊर्जा विद्युत जेनरेटर और प्रकार	्राएजारगराज
04	पवन ऊर्जा टरबाइन - सुदूर संवेदन उपकरण के द्वारा मापन	श्रीमती एम सी लावण्या
05	पवन ऊर्जा आँकड़ों का मापन और विश्लेषण	श्रीमती जी अरिवृक्कोडि
06	पवन ऊर्जा क्षेत्रों का डिजाइन और लेआउट	श्री जे बॉस्टीन
07	भारतीय पवन ऊर्जा के विकास में राष्ट्रीय पवन ऊर्जा संस्थान की भूमिका	डॉ पी कनगवेल
08	पवन ऊर्जा टरबाइन घटक – एक सिंहावलोकन	
	अपतटीय पवन ऊर्जा	श्री एम जॉएल फ्रेंकलिन असारिया
09	पवन ऊर्जा टरबाइन गियर बॉक्स	श्री एन राज कुमार
10	पवन ऊर्जा टरबाइन जनरेटर्स	श्री एम अनवर अली
11	पवन ऊर्जा टरबाइन की नियंत्रण एवं सुरक्षा व्यवस्था	
	पवन ऊर्जा टरबाइन घटक	श्री एस अरुळसेल्वन
12	पवन ऊर्जा टरबाइन फाउंडेशन	
	लघु पवन ऊर्जा टरबाइन परीक्षण और उच्च वर्ण संकर प्रणाली	डॉ राजेश कत्याल
13	पवन ऊर्जा टरबाइन परीक्षण और मापन तकनीक	श्री एस ए मैथ्यू
14	पवन ऊर्जा टरबाइन परीक्षण हेतु उपकरणीकरण	
	विद्युत वक्र मापन	श्री एम श्रवणन
15	सुरक्षा और कार्य प्रणाली के परीक्षण	श्री भुक्या राम दास
16	पवन ऊर्जा टरबाइन ग्रिड एकीकरण	श्रीमती दीपा कुरुप
17	पवन ऊर्जा टरबाइन प्रकार प्रमाणन और आईईसी 61400-1 के अनुसार	श्री ए सेंथिल कुमार
Y. Aministra	डिजाइन आवश्यकताओं का अवलोकन	त्रा ए सावल कुमार
18	भारत सरकार की नितियाँ और योजनाएं	श्री मोहम्मद हुसैन
19	सौर ऊर्जा विकिरण संसाधन निर्धारण	श्री आर कार्तिक

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई के वैज्ञानिकों और कार्मिकों द्वारा प्रशिक्षण / सम्मेलन / सेमिनार में प्रतिभागिता

डॉ एस गोमतिनायगम, महानिदेशक

- 10 फरबरी 2016 को चेन्नई स्थित 'रैडिसन ब्लू होटल जीआरटी' में "पूर्वानुमान और पवन ऊर्जा एवं विद्युत निर्धारण" विषय पर NIWE और IWPA द्वारा संयुक्त रूप से आयोजित अंतर्राष्ट्रीय कार्यशाला में भाग लिया।
- 12 फरवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में राष्ट्रीय पवन ऊर्जा संस्थान और टीयूवी राईनलैंड द्वारा आयोजित "पवन ऊर्जा टरबाइन प्रमाणन - भारत में रुझान, चुनौतियां और समाधान " विषय पर आयोजित कार्यशाला में भाग लिया।

के भूपित, अपर निदेशक और WRA एकक प्रमुख ने दिनांक 28 मार्च 2016 को भुवनेश्वर में मैसर्स OREDA के अधिकारियों के लिए "संशोधित SWES केंद्रित दूरसंचार क्षेत्र" विषय पर आयोजित एक दिवसीय प्रशिक्षण कार्यक्रम में 'पवन ऊर्जा संसाधन निर्धारण एवं तकनीक' विषय पर व्याख्यान दिया।

आर विनोद कुमार, किनष्ट अभियंता ने दिनांक 28 मार्च 2016 को भुवनेश्वर में मैसर्स OREDA के अधिकारियों के लिए "संशोधित SWES केंद्रित दूरसंचार क्षेत्र" विषय पर आयोजित एक दिवसीय प्रशिक्षण कार्यक्रम में भाग लिया और पवन ऊर्जा टरबाइन उपकरणों का प्रशिक्षण प्रदान किया।

पवन ऊर्जा टरबाइन परीक्षण

एस ए मैथ्यु, निदेशक और पवन ऊर्जा टरबाइन परीक्षण एकक प्रमुख

- 16 फरवरी 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में राष्ट्रीय पवन ऊर्जा संस्थान और टीयूवी राईनलैंड द्वारा आयोजित "पवन ऊर्जा टरबाइन प्रमाणन - भारत में रुझान, चुनौतियां और समाधान " विषय पर आयोजित कार्यशाला में भाग लिया।
- 28 जनवरी 2016 को नई दिल्ली में इंडिया हैबिटेट सेंटर में मैसर्स स्ट्टेग एनर्जी सर्विसेज़ (इंडिया) प्राइवेट लिमिटेड के द्वारा " स्मार्ट शहरों में योजना और ऊर्जा प्रबंधन" विषय पर आयोजित अंतर्राष्ट्रीय संगोष्ठी में भाग लिया।

एस ए मैथ्यु & भुक्या रामदास

- 04 से 05 जनवरी 2016 की अविध में नोएडा में इलेक्ट्रॉनिक्स इंजीनियरिंग परीक्षण केंद्र (CETE) में "मानकीकरण परीक्षण और गुणवत्ता प्रमाणन (STQC) के द्वारा "विद्युत मानकों के लिए अंशांकन तकनीक" विषय पर आयोजित प्रशिक्षण में भाग लिया।
- 20 से 22 जनवरी 2016 की अवधि में नोएडा में इलेक्ट्रॉनिक्स इंजीनियरिंग परीक्षण केंद्र (CETE) में "मानकीकरण परीक्षण और गुणवत्ता प्रमाणन (STQC) के द्वारा "मापन अनिश्चितता का मूल्यांकन(इलेक्ट्रो मैकेनिकल पैरामीटर्स)" विषय पर आयोजित प्रशिक्षण में भाग लिया।

एस ए मैथ्यु & एम श्रवणन

 14 से 17 मार्च 2016 की अविध में बैगलुरु में DNVGL के द्वारा "पवन ऊर्जा टरबाइन और विद्युत कार्यनिष्पादन आईईसी61400-12-1 ईडी.1 और आईईसी61400-12-2 ईडी.1 के अनुसार" विषय पर आयोजित प्रशिक्षण में भाग लिया।

एस परमशिवम & एम कुरुपुचामि

28 से 29 जनवरी 2016 की अवधि में बैगलुरु में केन्द्रीय विद्युत अनुसंधान संस्थान के द्वारा "ग्राउंडिंग प्रेक्टिस" विषय पर आयोजित कार्यशाला में भाग लिया।

एस परमशिवम

18 से 21 जनवरी 2016 की अवधि में चेन्नई में मैसर्स ब्रैनवेव कनसलटेंट के द्वारा "प्रयोगशाला प्रबंधन प्रणाली और आंतरिक लेखा परीक्षा" विषय पर आईएसओ/ आईईसी 17025: 2005 के आधार पर कार्मिकों के लिए आयोजित प्रशिक्षण में भाग लिया।

एम कुरुपुचामि, टी सुरेशकुमार, बी कृष्णन, आर विनोदकुमार & आर गिरीराजन

15 से 19 फरवरी 2016 की अवधि में 'मैसर्स जयपुर उत्पादकता केंद्र (जेपीसी)' द्वारा गोवा में आयोजित "प्रबंधकीय प्रभावशीलता के लिए तनाव और समय प्रबंधन" विषय पर 74 वें आवासीय कार्यक्रम में भाग लिया।

एस अरुलसेलवन, सहायक अभियंता, S&C

27 से 29 जनवरी 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान चेन्नई में 'मैसर्स PRDC, बैंगलोर' के द्वारा "मीपॉवर सॉफ्टवेयर" के लिए आयोजित प्रशिक्षण कार्यक्रम में भाग लिया।

ए सेंथिल कुमार, निदेशक एवं एकक प्रमुख,S&C और एस अरुलसेलवन, सहायक अभियंता, S&C

11 मार्च 2016 को चेन्नई में "ANSYS 17.0-10X, अंतर्दृष्टि, उत्पादकता" विषय पर 'मैसर्स ANSYS इंडिया द्वारा आयोजित एक दिवसीय प्रौद्योगिकी अद्यातन संगोष्टी में भाग लिया।

पी कनगवेल, अपर निदेशक एवं एकक प्रमुख, ITCS & एम जॉयल फ्रेंकलीन असॉरिया, अपर निदेशक, ITCS

28 मार्च 2016 को ओडिशा राज्य के भुवनेश्वर में "नवीन और नवीकरणीय ऊर्जा मंत्रालय की लघु पवन ऊर्जा टरबाइन और उच्च वर्ण संकर प्रणाली की राज्य नोडल एजेंसियों के अधिकारियों के लिए एवं क्षेत्र चयन WRA & SWES हेतु बनाई गई योजना" हेतु एक दिवसीय क्षेत्रीय कार्यशाला के आयोजन हेतु समन्वय कार्य किया।

प्र**सून कुमार दास,** सहायक निदेशक (तकनीकी) अनुबंध, SRRA

16 फरवरी 2016 को चेन्नई में "वाटरफॉल्स इंस्टीटयूट ऑफ टेकनोलोज़ी ट्रांसफर (WITT) और मद्रास वाणिज्य एवं उद्योग चैंबर" द्वारा "तमिलनाडु राज्य में नवीकरणीय ऊर्जा अपनाने के अवसर और चुनौतियां" विषय पर आयोजित एक दिवसीय संगोष्ठी में भाग लिया।

MiPower प्रशिक्षण

दीपा कुरुप, एम श्रवणन, भुक्या रामदास और ए आर हसन - 27 से 29 जनवरी 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान चेन्नई में 'मैसर्स पॉवर रिसर्च और डिवलोपमेंट कंसलटेंट,बैंगलोर' के द्वारा "मीपॉवर सॉफ्टवेयर - 9.1 पॉवर सिस्टम एनालाइस" के लिए आयोजित प्रशिक्षण कार्यक्रम में भाग लिया।

Arc GIS software training

सी स्टीफन जेरेमिअऑस और नवीन मृत्थु

29 फरबरी से 02 मार्च 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान चेन्नई में आयोजित 'ESRI Arc GIS सॉफ्टवेयर' प्रशिक्षण में भाग लिया।

राष्ट्रीय पवन ऊर्जा संस्थान के अध्यक्ष और इसकी शासी-परिषद के अध्यक्ष का संस्थान-भ्रमण

राष्ट्रीय पवन ऊर्जा संस्थान के अध्यक्ष श्री उपेन्द्र त्रिपाठी, भा.प्र.से., और राष्ट्रीय पवन ऊर्जा संस्थान की शासी-परिषद के अध्यक्ष एवं नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव महोदय ने राष्ट्रीय पवन ऊर्जा संस्थान चेन्नई संस्थान में दिनांक 18 फरवरी 2016 को भ्रमण किया। इस अवसर पर उन्होंने संस्थान परिसर में दृश्य-श्रव्य सम्मेलन प्रणाली कक्ष का विधिवत उद्घाटन किया और मुख्य द्वार पर बनाए गए त्रिभाषी (तिमल-हिंदी-अंग्रेजी) राष्ट्रीय पवन ऊर्जा संस्थान नाम-पट्ट को उपयोग हेतु विधिवत आरम्भ किया। उन्होंने राष्ट्रीय पवन ऊर्जा संस्थान के सभी कार्मिकों को प्रेरणादायक भाषण दिया और 17 वें अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम के प्रतिभागियों के साथ चर्चा की। उन्होंने अंतर्राराष्ट्रीय प्रतिभागियों के साथ कॉफी समय व्यतीत किया और उनसे उनके अनुभव और प्रशिक्षण हेतु उनके सुझाव भी पूछे।

राष्ट्रीय पवन ऊर्जा संस्थान का १८वाँ स्थापना दिवस

दिनांक 21 मार्च 2016 को, निरंतर चतुर्थ वर्ष, राष्ट्रीय पवन ऊर्जा संस्थान का "स्थापना दिवस", 18वाँ जन्मदिवस, विविध कार्यक्रमों के साथ मनाया गया। दिनांक 21 मार्च 2016 को प्रातः 9.30 बजे से दोपहर 12.30 बजे के मध्य राष्ट्रीय

पवन ऊर्जा संस्थान में नवीकरणीय ऊर्जा संसाधनों और उनके अनुप्रयोगों के विषय में जागरूकता उत्पन्न करने के लिए राष्ट्रीय पवन ऊर्जा संस्थान की सभी सुविधाओं का अध्य्यन-भ्रमण करने के लिए जनसाधारण में 'खुला दिवस' घोषणा की गई।

राष्ट्रीय पवन ऊर्जा संस्थान और भारत के 'प्रकृति के लिए विश्व व्यापक निधि' (डब्ल्यूडब्ल्यूएफ) संस्थान के सहयोग से विभिन्न प्रतियोगिताएं आयोजित की गईं जिसमें सम्पूर्ण तिमलनाडु के 30 विद्यालयों से 600 से अधिक छात्र – छात्राओं ने प्रतियोगिताओं में भाग लिया। इस उपलक्ष्य में समापन समारोह और पुरस्कार वितरण समारोह आयोजित किया गया जिसमें नवीन और नवीकरणीय ऊर्जा मंत्रालय के मुख्य कार्यपालक अधिकारी एवं पूर्व सलाहकार और राष्ट्रीय सौर ऊर्जा संस्थान के महानिदेशक डॉ. प्रवीण सक्सेना मुख्य अतिथि थे। उन्होंने रा.प.ऊ.संस्थान के सम्मेलन हॉल में रा.प.ऊ.संस्थान के कार्मिकों को स्मृति-चिन्ह और प्रतियोगिताओं के विद्यार्थी-विजेताओं को पुरस्कार प्रदान किए और स्थापना दिवस व्याख्यान दिया। राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक डॉ एस गोमितनायगम एवं नवीन और नवीकरणीय ऊर्जा मंत्रालय के प्रिंसीपल वैज्ञानिक अधिकारी श्री जे के जेठानी ने भी सम्मेलन कक्ष में उपस्थित श्रोताओं को मंत्रोधित किया।

राष्ट्रीय पवन ऊर्जा संस्थान के स्थापना दिवस के 'खुला दिवस' के अवसर पर जनसाधारण द्वारा भ्रमण की एक झलक।

राष्ट्रीय पवन ऊर्जा संस्थान के स्थापना दिवस की एक झलक।

पवन ऊर्जा टरबाइन-फ़लक – ध्वनि के स्रोत

डॉ एस गोमतिनायगम, महानिदेशक, राष्ट्रीय पवन ऊर्जा संस्थान, ईमेल: dg.niwe@gov.in श्री जी अरिवृक्कोडी, सहायक अभियंता, पवन ऊर्जा संसाधन निर्धारण एकक, ईमेल: arivukkodi.niwe@nic.in

" हे गौरवशाली! हे असीम-अपार! सदैव तेजस्वी-प्रतापी रहने वाले, हे अबाध-अजेय! सदैव ओज-शक्ति रखने वाले, हे धन-धान्य! सदैव मानवता पर इनकी वर्षा करने वाले. . . " (–पवन भगवान 'मारुत' स्तोत्र – ऋग्वेद से उद्धृत एवं अन्दित ।)

ऋग्वेद में पवन को असीम-अपार, अबाध-अजेय एवं धन-धान्य प्रदान करने वाला कहा गया है। निःसंदेह आज भी यह अक्षय ऊर्जा सदैव परिपक्व रहने वाली है। वर्तमान वर्षों में, त्वरा गित से इसकी सिद्धता सुस्पष्ट होती जा रही है। चित्र -1 दर्शाता है कि पवन ऊर्जा टरबाइन क्षेत्र में पवन ऊर्जा टरबाइन एकल हों या समूहबद्ध जब वे आवासीय क्षेत्रों के समीप स्थित होते हैं और उनकी ध्विन असमय उस क्षेत्र में प्रवेश करती है तो वह अप्रिय और अवांछित ध्विन हो जाती है। हालांकि, पवन ऊर्जा टरबाइन की ध्विन से अशांति, सामाजिक स्वास्थ्य हेतु, एक बाधा उत्पन्न होती है, जबिक ध्विनक-कर्कशता, श्रवण-अप्रिय होने के कारण अधिक चिंता का विषय हो सकती है। पवन ऊर्जा टरबाइन ध्विन के स्नोत के विषय में निम्नवत सारांशतः प्रस्तुत है:

एक पवन ऊर्जा टरबाइन द्वारा उत्पन्न कुल ध्वनि कई घटकों से बनती है, व्यापक रूप से इसे यांत्रिक और वायुगतिकीय ध्वनि के रूप में वर्गीकृत किया जा सकता है। जब भी पवन की गति "एक सीमा से कम होती है", तब पवन ऊर्जा टरबाइन-फ़लक बहुत धीमी गति से चलते हैं और उस समय पवन ऊर्जा टरबाइन द्वारा उत्पन्न होने वाली ध्वनि बहुत ही कम होती है। और जब पवन ऊर्जा टरबाइन द्वारा उत्पन्न ध्वनि की गति हब की ऊंचाई पर लगभग 4 मीटर प्रति सेकंड और 30 मीटर प्रति सेकंड मापी जाती है और ध्वनि की गति इस स्तर के मध्य होती है तो उस समय ध्वनि एक ही लय में उच्चारण करती सुनाई देती है। यांत्रिक ध्वनि का मुख्य स्रोत पवन ऊर्जा टरबाइन के गियरबॉक्स और जनरेटर होते हैं। यांत्रिक ध्वनि के अन्य स्रोत पवन ऊर्जा टरबाइन के याँ-चालक, शीतलन-पंखे, सहायक उपकरण (जैसे कि हाइड्रोलिक्स) और पवन ऊर्जा टरबाइन को रोकने के ब्रेक के अनुप्रयोग आदि हैं। गियरबॉक्स से उत्सर्जित होने वाली ध्वनि संरचना-जनित है। पवन ऊर्जा टरबाइन की यांत्रिक ध्वनि को कम करने हेतु कुछ शमन-उपायों के माध्यम से इन्हें एक सीमा तक कम किया जा सकता है, जैसे कि ध्वनिक-संरक्षित गियरबॉक्स का उपयोग, आवधिक रखरखाव, कुछ यांत्रिक भागों को एक सुनिश्चित समय पर परिवर्तित करके उत्सर्जित ध्विन को कम किया जा सकता है। हालांकि, लघु पवन ऊर्जा टरबाइन जो प्रायः छत के ऊपर संस्थापित की जाती हैं उनमें से उच्च यांत्रिक ध्विन आती है क्योंकि उनके रोटर का आरपीएम अधिक होता है और उनका प्रचालन पृथ्वी के समीप और वायुगितकी के निर्माण के साथ-साथ अशांति उत्पन्न करता है।

दूसरी ओर वायुगतिकीय ध्विन पवन ऊर्जा टरबाइन-फ़लक के माध्यम से वायु के वहाँ से गुज़रने के कारण ध्विन उत्पन्न होती है। वायुगितकीय ध्विन विभिन्न आवृत्तियों में होती है अतः इसे ब्रॉडबैंड ध्विन माना जाता है। यह ध्विन, पवन ऊर्जा टरबाइन-फ़लक के पूर्णतः चक्रानुक्रम सतह पर लंब रूप में उसके फैलाव के कारण, पवन ऊर्जा टरबाइन के आकार, पवन की गित, और पवन ऊर्जा टरबाइन-फ़लक के पूर्णतः चक्रानुक्रम की गित के साथ परिवर्तन होता रहता है। वायुगितकीय घटना जो पवन ऊर्जा टरबाइन की ध्विन को प्रभावित करती है उसे चित्र-2 में दर्शाया गया है। वायुगितकीय ध्विन के कारणों को मुख्यतः तीन प्रकार में विभाजित किया जा सकता है:

- निम्न गतिकीय आवृत्ति-ध्वनि (Low-frequency noise)
- अशांत अन्तर्वाह-ध्वनि (Turbulent inflow noise)
- एयरफॉयल स्व-ध्वनि (Airfoil self-noise)

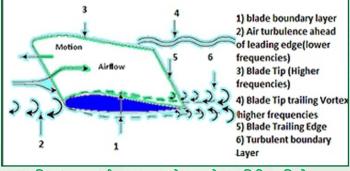
उच्च रेनॉल्ड्स संख्या Re (कॉर्ड की लंबाई के आधार पर), अशांत सीमा परतें (TBL) प्रायः सर्वाधिक एयरफॉयल विकसित करती हैं। ध्विन उस समय उत्पन्न होती हैं जब वह अशांत ध्विन पवन ऊर्जा टरबाइन-फ़लक के किनारे (TE) के ऊपर होकर गुज़रती है। Re के निम्न स्तर पर, वृहद लॉमिनार सीमा परतें (LBL) विकसित होती हैं, जिनके अस्थिर परिणाम वोर्टेक्स शेडिंग (VS) से होते हैं और इससे संबद्ध ध्विन (TE) होती है। अशून्य कोण से हमले हेतु, प्रवाह (TE) के समीप एयरफॉएल सक्शन की ओर (TE) अलग हो सकता है जो (TE) शेड टर्बलेंट वॉर्टिकित्य के कारण ध्विन करता है। बहुत अधिक कोण से हमले हेतु, यह अलग होने वाले प्रवाह (TE) के समीप होता है जो बड़े पैमाने पर अलग होने का रास्ता प्रदान करता है, जिसके कारण एयरफॉएल कम आवृत्ति की ध्विन को खोखले रूप में प्रवाहित करता है। यहाँ पर शेष स्रोत, अत्यधिक अशांत प्रवाह युक्त, पवन ऊर्जा टरबाइन-फ़लक या ब्लेड के टिप वोर्टेक्स अर्थात उसके किनारे पर एकत्रित होने के कारण होता है।

लॉसन (Lowson) [1] ने पूर्वानुमान के विभिन्न मॉडल दर्शाए हैं। समग्र ध्विन दबाव और सशक्त ध्विन स्तर, अलग-अलग दूरी पर, अलग-अलग स्थापित क्षमता के पवन ऊर्जा टरबाइन के लिए विश्लेषण आदि। इन मॉडलों की गणना हेतु सरल इनपुट पैरामीटर्स की आवश्यकता होती है। लॉसन ने ध्विन पूर्वानुमान को तीन श्लेणियों में वर्गीकृत किया है जो कि पवन उर्जा टरबाइन यंत्ररचना प्रणाली के अनुरूप ध्विन उत्पन्न करती है। निम्न तालिका -1 में अर्द्ध-प्रयोगसिद्ध संबंध समीकरणों से पता चलता है कि समग्र ध्विन पूर्वानुमान को विभिन्न श्लेणियों में किस प्रकार वर्गीकृत किया गया है।

'पवन' - 48वां अंक जनवरी – मार्च 2016

तालिका-1. समग्र ध्वनि पूर्वानुमान मॉडल

पूर्वानुमान मॉडल समीकरण


Lowson	$L_{WA} = 10log_{10}PWT + 50$	Eq.1
Hau	$L_{WA} = 22log_{10}D + 72$	Eq.2
Hagg	$L_{WA} = 50log_{10}V_{Tip} + 10log_{10}D - 4$	Eq.3
Modified Hagg	$\begin{split} L_{_{pA}} &= C_{_{1}}log_{_{10}}V_{_{Tip}} + C_{_{2}}log_{_{10}}\left(nB\frac{A_{_{b}}}{A_{_{f}}}\right) + \\ & C_{_{3}}log_{_{10}}C_{_{T}} + C_{_{4}}log_{_{10}}\underbrace{D}_{r} - \\ & C_{_{5}}log_{_{10}}D - C_{_{6}} \end{split}$	Eq.4

उपर्युक्त समीकरणों में वॉट्टस युक्त विद्युत दर वाली पवन ऊर्जा टरबाइन (PWT) की आवश्यकता होती है, जिसमें रोटर व्यास (D) मीटर में, रोटर ब्लेड की नोक-गति (VTip) मिनट प्रति सेकिंड में, टरबाइन-फ़लक की संख्या (A_b), रोटर क्षेत्र (A_r), अक्षीय बल गुणांक (CT), रोटर हब और पर्यवेक्षक के मध्य की दूरी (r), और कुछ स्थिरांक (C_1 - C_6) [2,3]। स्थिरांक C जैसे हैज़ ने बताए हैं वैसे तालिका-2 में दर्शाए गए हैं।

तालिका-2. हैज़ के अनुसार समीकरण 4 का स्थिरांक

स्थिर	मूल्य
C ₁	63.3
C_2	11.5
C_3	2.5
C_4	20.0
C_5	10.0
C ₆	27.5


व्यक्तिगत पवन ऊर्जा टरबाइन-फ़लक ध्विन ग्रोस्वेल्ड और ब्रूक्स, पोप, मोर्कोलिनि (BPM) वायुगतिकीय मॉडल [4] हैं, इस मॉडल में पवन ऊर्जा टरबाइन को खंडों में विभाजित किया गया है, प्रत्येक खंड के अपने स्वयं के कॉर्ड हैं, स्पॉन, कोण के हमले, मुक्त धारा वेग आदि इसलिए प्रत्येक खंड से उत्सर्जित कुल ध्विन स्तर पर अलग-अलग आकार, आकार और मोड़ का अपना योगदान होता है।

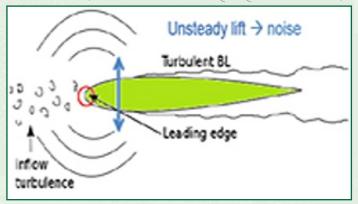
चित्र -2. पवन ऊर्जा टरबाइन-फ़लक के साथ जुड़े वायुगतिकीय ध्वनि स्रोत

चित्र-2 के संदर्भ में, विभिन्न वायुगतिकीय ध्विन उत्पादन यंत्ररचना को वर्गीकृत किया गया है:

i) अन्तर्वाह अशांति ध्वनि

चित्र-3. अन्तर्वाह अशांति ध्वनि

जैसा कि चित्र-3 में दर्शाया गया है, पवन ऊर्जा टरबाइन-फ़लक के मध्य से जब वायु गुज़रती है तब वह वायुमंडलीय अशांति उत्पन्न करती है जिसके कारण स्थानीय कोण पर हमला-सा होता है जो कि उसके ऊपर उठने, खींचने और बल के उतार-चढ़ाव का कारण बनता है। जैसे कि पवन ऊर्जा टरबाइन ध्विन के अन्तर्वाह अशांति ध्विन पर आधारित समीकरण-5 में अर्द्ध-प्रयोगसिद्ध संबंध सूत्र दिखाया गया है वह ग्रोस्वेल्ड (5) द्वारा प्रस्तुत कार्य पर आधारित है।


$$SPL_{1/3}(f) = 10log_{10}[(BSin^2\theta \rho^2 c_{0.7}R\sigma^2 V_{0.7}^4)/(d^2 a_0^2)] + K_a \qquad Eq.5$$

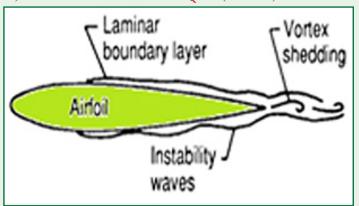
जहाँ पर,

एसपीएल ध्विन दबाव स्तर का एक तिहाई सप्तक बैंड (dB)है, f तो (Hz) में बैंड केंद्रीय फ्रीक्वेंसी है, θ रोटर हब और रिसीवर लाइन के मध्य का कोण है और इसका ऊर्ध्वाधर प्रक्षेपण (rad) ρ रोटर-प्लेन में है, वर्ग वायु घनत्व (kg/m³), घूर्णी अक्ष से 70% की दूरी पर C0.7 रोटर ब्लेड कॉर्ड है, R रोटर अर्धव्यास है, σ^2 अशांत टरबयुलेंस का मीन स्क्ष्वेयर है (m²/s²), $V_{0.7}$ अर्धव्यास पर V0.7 आगे की गित हेतु ब्लेड है (0.7 R Ω) (m/s), Ω रोटर की गित है (rpm), d निरीक्षण (m) है, α_s ध्विन की गित है (m/s), दूरी और K_s आवृत्ति निर्भर स्केलिंग के कारण हैं (dB)।

ii) पवन ऊर्जा टरबाइन-फ़लक के किनारे पर अशांत सीमा परत ध्वनि(TBL-TE)

यह एक व्यापक बैंड आवृत्ति स्पेक्ट्रम है। जैसे कि चित्र-4 में दर्शाया गया है, पवन ऊर्जा टरबाइन-फ़लक से ध्वनि उत्पादित होती है। पवन ऊर्जा टरबाइन-

चित्र-4 पवन ऊर्जा टरबाइन-फ़लक के किनारे पर अशांत सीमा परत ध्वनि (TBL-TE)



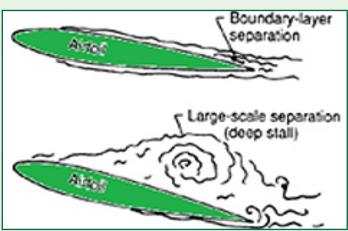
फ़लक के किनारे पर अशांत सीमा परत ध्वनि एयरफॉएल होती है। आधुनिक पवन ऊर्जा टरबाइन में यह ध्वनि का प्रमुख स्नोत है जिसमें ऊर्जा की अधिकतम आवृत्ति का रेंज 250-1000Hz होता है। जिसके परिणामस्वरूप एयरफॉएल के लिए समीकरण-6 इस प्रकार है:

$$SPL_{_{1/3}}\left(f\right) = 10log_{_{10}}\left\{V_{_{r}}^{5}BD\frac{\delta l}{r_{_{0}}^{^{2}}}\left(\frac{S}{S_{max}}\right)^{\!\!4}\left[\left(\frac{S}{S_{max}}\right)^{\!\!1.5}\!\!+\!0.5\right]^{\!\!-\!4}\right\}\!\!+\!K_{_{b}}$$
 Eq.6 जहाँ पर,

Vr परिणामी वेग पवन ऊर्जा टरबाइन-फ़लक तत्व पर है (m/s), D डारेक्टिवीटी फेक्टर है, M उसके मिलन की संख्या है, जो कि प्रत्येक कॉर्ड पर स्वतंत्र संवहन गति के अनुरूप है, M_{\circ} एक कंवेक्शन मिलन संख्या है, 0.8M, R_{\circ} रेनॉल्ड्स संख्या है, I पवन ऊर्जा टरबाइन-फ़लक तत्व की लंबाई है(m), r_{\circ} निरीक्षित दूरी (m) है, (s) स्ट्रॉहल संख्या है, S_{max} को 0.1 के रूप में लिया जाता है, KB निरंतर स्केलिंग के लिए $5.5 \, \text{dB}$ है।

iii) लॉमिनार सीमा परत वोर्टेक्स शेड्रडिंग (LBL-VS) ध्वनि

चित्र-5 लॉमिनार सीमा परत वोर्टेक्स शेड्डिंग (LBL-VS) ध्वनि


एक पवन ऊर्जा टरबाइन 105 से 106 रेनॉल्ड्स संख्या रेंज के अंतर्गत संचालित की जा सकती है क्योंकि संबंधित परिवर्तन पवन की गित और विभिन्न पवन ऊर्जा टरबाइन-फ़लक त्रिज्या की लंबाई के कारण होता है जैसा कि चित्र 5 में दर्शाया गया है, यदि लेमिनॉर सीमा परत पर एक एयरफॉएल या उसके दोनों किनारों पर और एयरफॉएल की सतह को अधिकतम ढकते हुए, अस्थिर लामिना के बीच एक प्रतिध्वनित परस्पर-क्रिया संक्रमण होगी तो अशांत ध्वनि के साथ पवन ऊर्जा टरबाइन-फ़लक के छोर पर ध्वनि होगी। इसे लेमिनॉर सीमा परत वोर्टेक्स शेड्डिंग ध्वनि और प्रयोगसिद्ध संबंध कहा जाता है जैसा कि समीकरण-7 में देखा जा सकता है।

$$SPL_{_{1/3}}(f) = 10log_{_{10}} \frac{BV_{_{r}}^{5.3}tlSin^{2}(\Theta 2)Sin^{2}\phi}{(1+MCos\Theta)^{0}[1+(M-M_{_{c}})cos\Theta]^{2}r_{_{0}}^{2}} + K_{_{c}}$$
 Eq.7 जहाँ पर,

 ϕ स्नोत से प्राप्ति-रेखा और रोटर विमान (रड) में अपने क्षैतिज प्रक्षेपण के मध्य का एक कोण है, t पवन ऊर्जा टरबाइन-फ़लक के छोर की मोटाई (m) है, K_c मापन कारक पर आवृत्ति निर्भर कारक है (dB)

iv) अचल गति - पृथक्करण ध्वनि

अचल गति - पृथक्करण ध्वनि तब होती है जब कोण के हमले मध्यम से अधिक गति के होते जाते हैं। जैसे-जैसे कोण के हमले अधिक होते जाते हैं सक्शन की

चित्र-6. अचल गति - पृथक्करण ध्वनि

ओर सीमा परत कोण अधिक हो जाते हैं और बड़े पैमाने पर अस्थिर वोर्टेक्स संरचनाओं पर आकार लेने लगते हैं, यह चित्र-6 में देखा जा सकता है।

प्रयोगसिद्ध संबंध जैसा कि ब्रूक्स, पोप, मॉरकोलिनी (बीपीएम) [4] द्वारा दर्शाया गया है वह पृथक्करण - अचल गति ध्विन हेतु दिए गए समीकरण 8-11 में देखा जा सकता है, वे विभिन्न मापन कारकों के साथ TBL-TE ध्विन हेतु एक समान होते हैं।

$$(SPL)_{TOT} = 10log(10^{(Lp)_{\alpha}/10} + 10^{(Lp)_{8}/10} + 10^{(Lp)_{p}/10})$$
 Eq.8

$$(L_p)_{\alpha} = 10\log\left(\frac{\delta_{sM^sLD_t}}{R_p^2}\right) + B\left(\frac{St_s}{St_s}\right) + K_2$$
 Eq.9

$$(L_p)_p = 10\log\left(\frac{\delta_{pM^sLD_h}}{R^2}\right) + A\left(\frac{St_p}{St_1}\right) + (K_1-3) + K_1$$
 Eq.10

$$(L_p)_s = 10\log\left(\frac{\delta_{sM^sLD_h}}{R^2}\right) + A\left(\frac{St_s}{St_1}\right) + (K_1-3)$$
 Eq.11

जहां पर,

(SPL) TOT कुल पृथक्करण ध्विन स्पेक्ट्रम एक तिहाई है, $\delta_{\rm p}$ $\delta_{\rm s}$ सीमा परत हैं और दबाव पक्ष की विस्थापन मोटाई और सक्शन-पक्ष की रेनॉल्ड्स संख्या (R_s) है, प्रत्येक क्षेत्र हेतु सीमा परत की मोटाई-मूल्य है क्योंकि त्रिज्या और वेग परिवर्तन उसके दोनों किनारों तक है, अतः रेनॉल्ड्स संख्या प्रत्येक खंड में परिवर्तित होती है, α हमले का कोण है जो कि बिंदु से पवन ऊर्जा टरबाइन-फ़लक के छोर तक अलग है। $D_{\rm h}$ और $D_{\rm l}$ सीधी प्रक्रिया में कार्य कर रहे हैं, A, B आवृत्ति स्पेक्ट्रम आकार और विस्थापन मोटाई और आवृत्ति का है, $K_{\rm l}$ और $K_{\rm l}$ आयाम कार्य कर रहे हैं जबिक $K_{\rm l}$ की मिलान-संख्या $K_{\rm l}$ है।

v) टिप वोर्टेक्स गठन (TIP-VF) ध्वनि

जैसा कि चित्र-7 में दर्शाया गया है ध्विन वास्तव में टिप वोर्टेक्स और दोनों किनारों के घर्षण के कारण होती है। पवन ऊर्जा टरबाइन-फ़लक के किनारों की ध्विन दोनों किनारों के अशांत किनारों की ध्विन की तुलना में महत्वपूर्ण नहीं है। समीकरण-12 में केवल टिप खंड के मापदंडों की आवश्यकता है।

Airfoil blade tic

'पवन' - 48वां अंक जनवरी – मार्च 2016

चित्र-7 टिप वोर्टेक्स गठन (TIP-VF) ध्वनि

$$(L_p)_{Tip} = 10log \left(\frac{M^2 M_{max}^5 l^2 D_h}{R_e^2}\right) - 30.5log(St" + 0.3)^2 126$$
 Eq. 12

जहाँ पर,

 $M_{max} = M_{max} (\alpha_{tip})$ अधिकतम मिलान-संख्या है, $I=I (\alpha_{tip})$ पृथक्करण क्षेत्र है फ़लक के रूप में ध्वनि स्पेक्ट्रम क्षेत्र है, $St'' = \left(\frac{fh}{U_{max}}\right)$ स्ट्रॉहल -संख्या है, h दोनों किनारों के मध्य का अंतर है, U_{max} आसपास के क्षेत्र में अधिकतम गति का टिप वोर्टेक्स है।

$$L_{w} = L_{p} + 10\log^{2} + C$$
 Eq.13

समीकरण-13 का उपयोग करते हुए उसके स्तर से अनुमान लगाया गया कि ध्वनि शक्ति का स्तर और समग्र ध्वनि का दबाव कितना है। जहाँ पर.

 L_w समग्र ध्विन की शक्ति का स्तर है, L_p समग्र ध्विन के दबाव में dB का स्तर है, C स्रोतों के माध्यम के आधार पर कुछ सुधार कारकों का योग है, ये कारक आसपास के क्षेत्रों से संबंधित हैं, स्रोत विशेषताएं (पूर्ण, अर्ध, या चौथाई क्षेत्र), दुरी प्रभाव, वायु अवशोषण, जमीन और मौसम संबंधी प्रभाव, क्षीणन पर निर्भर करती हैं; स्क्रीनिंग, प्रतिबिंब द्वारा वृद्धि, इसके गतिशील अवस्था में सुधार या अन्य (टोर्निंग, आवेग आदि) कार्य करते हैं। C को 11 के बराबर लिया गया है जैसे कि हैज़ [3] द्वारा दर्शाया गया है।

सारांशतः पवन ऊर्जा टरबाइनों के अधिक उपयोग में, उस क्षेत्र का वातावरण जहाँ पर उनकी स्थापना की जानी है, इस कार्य हेतु सबसे अधिक महत्वपूर्ण पहलू है, इनकी स्थापना के बाद इनके प्रभाव का ऑकलन करने की आवश्यकता है, क्योंकि पवन ऊर्जा टरबाइन-फ़लक की ध्वनि से वहाँ के विकसित समुदाय पर पर्यावरणीय प्रभाव पड़ता है। पवन ऊर्जा टरबाइन की ध्वनि का ऑकलन करने हेत्, प्रत्येक पवन ऊर्जा टरबाइन की ध्वनि शक्ति का स्तर और पवन ऊर्जा टरबाइन की ध्वनि के दबाव के स्तर का अनुमान लगाया जाना चाहिए। उपलब्ध अर्द्ध-प्रयोगसिद्ध मॉडल्स से प्राप्त आँकड़ों, मापदंडों के आधार पर यह पूर्वानुमान किया जा सकता है कि अलग-अलग पवन ऊर्जा टरबाइन-फ़लक से कितनी ध्वनि उत्पन्न हो रही है और वह उस क्षेत्र विशेष में ध्वनि के स्तर में कितनी वृद्धि कर रही है।

शोध-संदर्भ

- [1] लॉवसन, एम वी, "असैसमेंट एंड प्रिडकशन ऑफ विंड टरबाइन नॉयस" प्रवाह समाधान रिपोर्ट 92/19, ETSU W/13/00284/REP, 1992. पीपी.1-59.।
- [2] हाओ, ई, लंगेनब्रिंक, जे और पाल्ज़, डब्ल्यु., "WEGA लार्ज़ विंड टरबाईंस," स्प्रिंगर-वेरलग, बर्लिन, 1993, पीपी.1-143. http://dx.doi.org/10.1007/978-3-642-52129-4.
- [3] हैज़, एफ., "एयरोडॉइनेमिक नॉयस रिड्यसड डिज़ाइन ऑफ लार्ज़ एडवानसड विंड टरबाईंस," ECWEC'90 प्रोक. यूरोपीय समुदाय पवन ऊर्जा सम्मेलन, मैड्रिड, स्पेन, पीपी। 384-388, सितम्बर 1990.
- [4] ब्रुक्स, एफ.टी.,; पोप, डी एस और मार्कोलिनी, एम ए, "एयरफॉइल स्व-ध्वनि और पूर्वानुमान,"। NASA RP-1218, 1989, पीपी. 1-137.
- [5] ग्रोसवेल्ड, एफ डब्ल्यू, "प्रिडकशन ऑफ ब्रॉडबेंड नॉयस फ्रोम हॉरिज़ेंटल एक्सिस विंड टरबाईंस" प्रोपल्सन और पावर के जर्नल्स. 1985, Vol. 1, No. 4, pp. 292-299.

संदर्भग्रंथ-सूची

- [1] http://niwe.res.in/assets/Docu/ news_letter/Issue_20.pdf.
- [2] http://niwe.res.in/assets/Docu/ news_letter/Issue_21.pdf

प्रकाशन

राष्ट्रीय पवन ऊर्जा संस्थान (रा.प.ऊ.सं.)

भारत सरकार के नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) का स्वायत्त अनुसंधान एवं विकास संस्थान । वेलचेरी-ताम्बरम प्रमुख मार्ग, पल्लिकरणे, चेन्नई - 600 100

दूरभाष : +91-44-2900 1162 / 1167 / 1195 फैक्स : +91-44-2246 3980

इमेल : info.niwe@nic.in वेबसाइट : http://niwe.res.in

नि:शुल्क डाऊनलोड कीजिए

पवन के सभी अंक रा.प.ऊ.सं. की वेबसाइट पर उपलब्ध हैं आप नि:शुल्क डाऊनलोड कर सकते हैं http://niwe.res.in