51वां अंक अक्तूबर- दिसम्बर 2016 राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई की समाचार पत्रिका '**पवता**'

# ISO 9001 : 2008 http://niwe.res.in

नीवे NIWE



www.facebook.com/niwechennai www.twitter.com/niwe\_chennai

# अनुक्रमणिका

- पवन ऊर्जा टरबाइन क्षेत्रों में विद्युत गुणवत्ता की विशेषताएं

-17

- 2

# संपादकीय



"आइए माह दिसंबर! एक आपदा आपकी प्रतिक्षा कर रही है!! "राष्ट्रीय पवन ऊर्जा संस्थान के लिए यह एक चेतावनी-सी ही है, क्योंकि पिछले वर्ष दिसंबर माह में जल-प्रलय रूपी कब्रीस्तान के कारण इस शहर में कई व्यक्ति जल-प्रलय बाढ़ के जल में बह जाने से स्वर्गवासी हो गए थे। इस वर्ष के दिसंबर माह में पवन की तेज़ तूफानी आंधी, झक्कड़ एवं झंझावत ने हरियाली से आच्छादित राष्ट्रीय पवन ऊर्जा संस्थान और आस-पास

के क्षेत्रों को काफी हानि पहुँचाई है। नोटबंदी / कैशलेस लेनदेन के संभावित प्रभाव की चर्चा को नज़र अंदाज कर दें तो भी पवन ऊर्जा का क्षेत्र पहले से ही सौर ऊर्जा प्रौद्योगिकी के समता ग्रिड बनने और इस प्रतिस्पर्धा के परिणामस्वरूप इस समय एक तनावपूर्ण स्थिति का सामना कर रहा है। तृतीय तिमाही में हमारी स्थापित क्षमता 1400 मेगावॉट हो रही है और पवन ऊर्जा उद्योग को इस वित्त वर्ष (वित्तीय वर्ष 2016-17) में कम से कम 4000 मेगावॉट विद्युत ऊर्जा प्राप्त करने की आशा है।

भारत में पवन ऊर्जा टरबाइन उपकरण निर्माण के क्षेत्र में नई कंपनियों का प्रवेश अवश्य ही उत्साहवर्द्धक कदम है। हालांकि, विद्युत क्रय समझौता, अनुमतियाँ, भूमि अधिग्रहण, कम ब्याज दर परिचालन नकदी प्रवाह, विद्युत अधिग्रहण और DISCOMs से शीघ्र भुगतान के विषय इसकी विकास गति को अभी भी अवरुद्ध कर रहे हैं जबिक भारत पवन ऊर्जा टरबाइन उपकरण विनिर्माण के क्षेत्र में विश्व में द्वितीय श्रेणी पर होने पर भी प्रतिवर्ष 8 से 10 गीगावॉट का उत्पादन करता है। उपलब्ध विनिर्माण क्षमता के अंतर्गत कम उपयोग का एक कारण भारत में देर से आरम्भ किए गए समकक्ष प्रतिस्पर्धात्मक और अधिक उत्साहित सौर ऊर्जा के क्षेत्र भी हैं।

बैंकिंग क्षेत्र में ब्याज दरों में गिरावट के साथ-साथ, यदि हरित क्षेत्र की इस जागरूकता को प्राथमिकता के आधार पर किया जाता है तो अवश्य ही भारत में पवन ऊर्जा / सौर ऊर्जा क्षेत्र में अत्याधिक वृद्धि दर की संभावना है। राष्ट्रीय पवन ऊर्जा संस्थान ने इस तिमाही में तिमलनाडु राज्य के समुद्री तट पर और गुजरात राज्य के समुद्री तट पर पवन ऊर्जा संसाधन मापन के माध्यम से भारत में अपतटीय पवन ऊर्जा क्षमता की प्राप्ति की दिशा में महत्वपूर्ण प्रगति की है। तिमलनाडु राज्य में विश्वसनीय मापन आधार पर तीन वर्ष से अधिक के लिए, एक वर्ष में लगभग 8.65 मीटर प्रति सेकंड वार्षिक पवन की गित से 10 महीनों के लिए स्थायी, संभावित सुनिश्चित पवन ऊर्जा उत्पादन किया जा सकता है। गुजरात की खाड़ी खंभात में एक महीने के अंदर ही LiDAR आधारित मापन परियोजना आरम्भ कर दी जाएगी। अपतटीय पवन ऊर्जा परियोजना के लिए भूगौतिकीय और भू-तकनीकी जांच भी आरम्भ की जा रही है।

राष्ट्रीय पवन ऊर्जा संस्थान के पवन ऊर्जा टरबाइन संसाधन निर्धारण एकक ने 10 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्रों में 21 परामर्शी परियोजनाओं का सत्यापन, 274.4 मेगावॉट ऊर्जा मूल्यॉकन परियोजना, 100 मेगावॉट तकनीकी परियोजनाओं का सम्यक-उद्यम ऑकलन इस अविध में पूर्ण किया है। पूर्वानुमान सेवाओं को प्रभावी एवं श्रेष्ठतम समय निर्धारण करने हेतु और इसके साथ ही पूर्ण तिमलनाडु राज्य में सम्पूर्ण स्थापित क्षमता प्रदान करने हेतु तैयार किया गया है।

पवन ऊर्जा टरबाइन परीक्षण और मध्य प्रदेश में एक और अन्य पवन ऊर्जा टरबाइन परीक्षण के कार्य निष्पादन हेतु दो समझौतों के लिए कार्य प्रगति पर हैं।

राष्ट्रीय पवन ऊर्जा संस्थान में पिछली RLMM समिति की बैठक दिनांक 26-10-2016 को आयोजित एवं पूर्ण की गई हैं, इससे पूर्व RLMM के कार्य नवीन और नवीकरणीय ऊर्जा मंत्रालय के द्वारा स्वयं किए जा रहे थे। अंतरराष्ट्रीय स्तर पर मान्यता प्राप्त प्रमाणीकरण परियोजनाओं के लिए कार्यों का एक भाग पहले से ही मैसर्स टीयूवी राईनलैंड, जर्मनी के साथ सहयोग करते हुए क्षमता निर्माण के एक भाग के रूप में राष्ट्रीय पवन ऊर्जा संस्थान के प्रमाणीकरण दल के द्वारा कार्यान्वयनित किया जा रहा है।

राष्ट्रीय पवन ऊर्जा संस्थान ने कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में एक पवन ऊर्जा - सौर ऊर्जा उच्च वर्ण संकर परियोजना आरम्भ की है और द्वितीय 2 मेगावॉट पवन ऊर्जा टरबाइन अनुसंधान की DFIG प्रौद्योगिकी के साथ संस्थापना के लिए कार्य प्रगति पर है।

नीदरलैंड के प्रतिनिधि और जर्मनी देश के मंत्रिस्तरीय प्रतिनिधिमंडल ने राष्ट्रीय पवन ऊर्जी संस्थान का भ्रमण किया और वैज्ञानिकों के साथ विचार-विमर्श किया। राष्ट्रीय पवन ऊर्जी संस्थान / सूचना, प्रशिक्षण और अनुकूलित सेवाएं एकक ने एक राष्ट्रीय प्रशिक्षण कार्यक्रम का आयोजन किया और पवन ऊर्जी संसाधन निर्धारण और पवन ऊर्जी टरबाइन क्षेत्र योजना विषय पर युगांडा देश के ऊर्जी मंत्रालय के अधिकारियों के लिए एक विशेष प्रशिक्षण कार्यक्रम आयोजित किया। नवीन और नवीकरणीय ऊर्जी मंत्रालय के द्वारा नये भर्ती किए गए वैज्ञानिकों के लिए भी प्रशिक्षण कार्यक्रम आयोजित किया।

राष्ट्रीय पवन ऊर्जा संस्थान ने इस अविध में कुछ प्रदर्शनियों में प्रदर्शनी कक्ष संस्थापित करते हुए भाग लिया। इस अविध में लगभग 130 विद्यार्थियों, शिक्षकों और संकाय सदस्यों ने अध्ययन-भ्रमण किया। राष्ट्रीय पवन ऊर्जा संस्थान / सूचना, प्रशिक्षण और अनुकूलित सेवाएं एकक में 2 विद्यार्थियों ने इंटर्नशिप प्रशिक्षण में भाग लिया। सेनेगल देश के एक विद्यार्थी ने आरटीएफ-डीसीएस कार्यक्रम के अंतर्गत राष्ट्रीय पवन ऊर्जा संस्थान में उपर्युक्त कार्य करना आरम्भ

राष्ट्रीय पवन ऊर्जा संस्थान ने भारत सरकार के भारत डिज़िटल अभियान में भाग लेते हुए श्रव्य-दृश्य सम्मेलन प्रणाली के माध्यम से इसमें भाग लिया। नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव ने राष्ट्रीय पवन ऊर्जा संस्थान को एक राष्ट्रीय संस्थान के रूप में राष्ट्र को समर्पित किया और राष्ट्रीय पवन ऊर्जा संस्थान में संस्थापित श्रव्य-दृश्य सम्मेलन प्रणाली सुविधा का विधिवत उद्घाटन भी किया।

सौर ऊर्जा संसाधन निर्धारण की गतिविधियों में अंशांकन और आँकड़ों का संसाधन एक मुख्य कार्य था।

राष्ट्रीय पवन ऊर्जा संस्थान की सुविधाओं का उपयोग करने हेतु ज्ञान-हस्तांतरण प्रबंधन गतिविधियों के अंतर्गत शिक्षा संस्थानों के युवा इनसे आकर्षित हुए और इनसे उचित लाभ प्राप्त किया। प्रौद्योगिकी मनन—मंथन व्याख्यान शृंखला के अंतर्गत 6 व्याख्यान आयोजित किए गए और इस अविध में संस्थान के कई कार्मिकों ने आमंत्रित व्याख्यान भी दिए।

आगामी माह राष्ट्रीय पवन ऊर्जा संस्थान से अधिवर्षिता के कारण सेवानिवृति होने के अवसर पर "राष्ट्रीय पवन ऊर्जा संस्थान- समूह" से विदाई लेते समय मैं सभी को हार्दिक धन्यवाद कहना चाहता हूँ क्योंकि उनके सहयोग के कारण ही राष्ट्रीय पवन ऊर्जा संस्थान की वार्षिक आय में 7 गुना वृद्धि संभव हो सकी है (आठ वर्षों में पंद्रह मिलियन अमेरिकी डॉलर का शुद्ध राजस्व) और कॉर्पस फंड में 5 गुना वृद्धि हुई है एवं एक दशक से अधिक की अवधि के लिए कार्मिकों के वेतन घटक में यह संस्थान स्वयं को आत्मिनर्भर बनाए रखने में सफल रहा है। 25 कार्मिकों ने उच्च शैक्षिक योग्यता / स्नातक / स्नातकोत्तर / पीएचडी और 35 कार्मिकों को विदेशी भ्रमण हेतु प्रतिनियुक्त भी किया गया। नवीकरणीय ऊर्जा के 175 गीगावॉट के लक्ष्य को पूरा करने और इस दिशा में आगे बढ़ने के लिए "राष्ट्रीय पवन ऊर्जा संस्थान का कुलीन समूह" रूपी फरहरा सोंपते हुए मुझे आत्मसंतोष की अनुभूति हो रही है।

राष्ट्रीय पवन ऊर्जा संस्थान की महत्वपूर्ण भूमिका है और इसे 1,80,000 करोड़ रुपये के निजी निवेश के साथ नए उत्साह और ऊर्जा के साथ एक जीवंत उद्योग का समर्थन है, इस संस्थान के द्वारा आप की सेवा करने हेतु आपके रचनात्मक, सकारात्मक एवं समीक्षात्मक विचार सदैव की भांति आमंत्रित करते हुए आप सभी को एक स्वस्थ, सुखी और समृद्ध नूतन वर्ष 2017 की शुभकामनाएं प्रदान करते हुए आपका।

**डॉ एस गोमतीनायगम,** महानिदेशक

# संपादकीय समिति

### मुख्य संपादक

डॉ एस गोमतीनायगम

महानिदेशक

#### सह-संपादक

डॉ. पी. कनगवेल

अपर निदेशक और एकक प्रमुख, ITCS

#### सदस्यगण

डॉ. राजेश कत्याल

उप महानिदेशक और एकक प्रमुख OW&IB

डॉ. जी गिरिधर

उप महानिदेशक और एकक प्रमुख SRRA

ए. मोहम्मद हुसैन

उप महानिदेशक और एकक प्रमुख WTRS

डी. लक्ष्मणन

उप महानिदेशक (प्रशासन और वित्त)

एम. अनवर अली

निदेशक और एकक प्रमुख, ESD

एस. ए. मैश्यु

निदेशक और एकक प्रमुख WTT

ए. सेथिल कुमार

निदेशक और एकक मुख्य, S&C

के. भ्रुपति

अपर निदेशक और एकक प्रमुख, WRA

जे.सी. डेविड सोलोमन

अपर निदेशक और एकक प्रमुख, KSM&SWES





# अपतटीय पवन ऊर्जा और औद्योगिक व्यापार

# l) (i) गुजरात राज्य, खंभात की खाड़ी में LiDAR आधारित (एकल-स्तम्भ और मंच) उप संरचना का समन्वायोजन

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा गुजरात-खंभात की खाड़ी में अपतटीय पवन ऊर्जा संभावित क्षेत्रों की पहचान की गई है। इस संदर्भ में, LiDAR की संस्थापना करते हुए इसके आधार पर अपतटीय आकड़ा संग्रह मंच से वास्तविक समय पवन ऊर्जा आँकड़े एकत्रित करना प्रस्तावित किया गया है।

एकलस्तम्भ और समर्थन मंच के निर्माण का कार्य नवी मुंबई, बेलापुर, रेती बंदर स्थित निर्माण यार्ड में किया जा रहा है। इस एकलस्तम्भ का व्यास 1.2 मीटर और लंबाई 42.5 मीटर है, इसके तीन घटक और 3 वर्ग हैं अर्थात नौका लैंडिंग, फेंडर, सीढ़ी और हस्त – पटरियाँ आदि हैं, LiDAR समर्थन मंच की मोटाई 25 मिलीमीटर और व्यास 5 मीटर है।

उपर्युक्त उप-संरचना को नवी मुंबई से नाव पर जैक-अप पद्धति का उपयोग करते हुए गुजरात तट, खंभात खाड़ी में, (अक्षांश: 20°41'30" उत्तर, देशांतर: 71°32'50" पूर्व) प्रस्तावित क्षेत्र स्थल पर लाया जाएगा। इसे प्रस्तावित स्थल पर हाइड्रोलिक मार्गदर्शक और ड्राइविंग मेकेनिज़म और नाव-जैक-अप पद्धति का उपयोग करते हुए संस्थापित किया जाएगा। इस उप-संरचना के जनवरी 2017 के अंत तक संस्थापित होने की संभावना है।

### ii) अपतटीय उप संरचना के विशेष जोड़ों में रंग-प्रवेश परीक्षण।

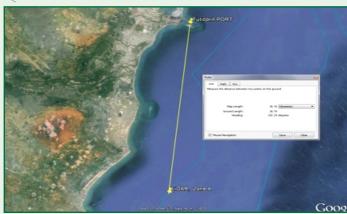
अपतटीय उप संरचना, एकलस्तम्भ और मंच के फ्लेंज़ कनक्टर्स के सभी विशेष जोड़ों में रंग-प्रवेश परीक्षण किया गया जिससे कि इसकी सतह में बाल जितनी दरारें, वेल्डिंग दोष और धातुमल वेल्डिंग दोष आदि भी हों तो उन्हें ठीक कर दिया जाए।

# iii) अपतटीय उप संरचना के LiDAR आधारित मंच पर कार्य करने हेतु अपेक्षित स्वीकृति।

राष्ट्रीय पवन ऊर्जा संस्थान ने राष्ट्रीय अपतटीय पवन ऊर्जा नीति 2015 के अनुसरण में निम्ननवत केंद्रीय मंत्रालयों / राज्य सरकारों से सैद्धांतिक स्वीकृति, अनापत्ति प्रमाण पत्र (एनओसी) प्राप्त कर लिया है जिससे कि गुजरात तट, खंभात खाड़ी में अपतटीय पवन ऊर्जा परियोजनाओं के विकास के लिए पवन ऊर्जा संसाधन निर्धारण अध्ययन एवं संबद्ध सर्वेक्षण कार्य किया जा सके।

| (1)  | केंद्रीय स्तर पर स्वीकृति         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------|-----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 豖.   | संबंधित केंद्रीय                  | स्वीकृति की                  | अभियुक्तियाँ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| सं.  | मंत्रालय / विभाग                  | वर्तमान स्थिति               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1    | रक्षा मंत्रालय (MoD)              | स्वीकृति प्राप्त हो गई है।   | रक्षा मंत्रालय के अंतर्गत सेना, नौसेना, वायु सेना, डीआरडीओ और इस<br>तरह के अन्य संबंधित संस्थानों से रक्षा और सुरक्षा पहलुओं से संबंधित<br>कार्यों हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2    | विदेश मंत्रालय (MEA)              | स्वीकृति प्राप्त हो गई है।   | भारत के समुद्री क्षेत्रों में अपतटीय पवन ऊर्जा परियोजनाओं के विकास<br>हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 3    | गृह मंत्रालय (MHA)                | स्वीकृति प्राप्त हो गई है।   | अपतटीय ऊर्जा भूभाग ब्लॉकों में विदेशी नागरिकों के द्वारा कार्य तैनाती<br>हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 4    | अंतरिक्ष विभाग (DoS)              | स्वीकृति प्राप्त हो गई है।   | सुरक्षा की दृष्टि से संस्थापित अंतरिक्ष विभाग के प्रतिष्ठानों और उनके<br>प्रतिष्ठानों से न्यूनतम दूरी बनाए रखने हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 5    | पर्यावरण एवं वन और जलवायु         | ऑनलाइन आवेदन-पत्र प्रस्तुत   | पर्यावरण प्रभाव निर्धारण और तटीय विनियमन क्षेत्र हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|      | परिवर्तन मंत्रालय (MoE&F&CC)      | किया गया, अपेक्षित स्वीकृति  | Julie :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|      |                                   | हेतु प्रतिक्षा की जा रही है। | and the second s |  |  |
| (II) | (II) राज्य स्तरीय स्वीकृति        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1    | गुजरात मेरीटाइम बोर्ड (GMB)       | स्वीकृति प्राप्त हो गई है।   | प्रमुख बंदरगाह के समीप प्रचालन नौ-परिवहन मार्ग से दूर प्रचालन<br>कार्य करने हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 2    | गुजरात राज्य तटीय क्षेत्र प्रबंधन | स्वीकृति प्राप्त हो गई है।   | राज्य स्तर पर पर्यावरण प्रभाव निर्धारण और तटीय विनियमन                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|      | प्राधिकरण (GSCZMA)                |                              | क्षेत्र हेतु स्वीकृति।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

उपर्युक्त के अतिरिक्त, राष्ट्रीय पवन ऊर्जा संस्थान ने मुंबई स्थित नौसेना सुरक्षा निरीक्षण (एनएसआई) के फ्लैग ऑफिसर अपतटीय रक्षा सलाहकार समूह (FODAG) से संबंधित जहाजों, उपकरणों और सेंसरों आदि को प्रस्तावित स्थल पर अभिनियोजित करने और संदर्भित अध्ययन और पवन ऊर्जा संसाधन, समुद्र विज्ञान और बैथीमैट्रिक ऑकलन सर्वेक्षण संबंधी प्रक्रिया कार्य प्रगति पर है।


# II) तमिलनाडु राज्य, मुन्नार की खाड़ी में LiDAR आधारित अपतटीय पवन ऊर्जा संसाधन मापन

राष्ट्रीय पवन ऊर्जा संस्थान ने तमिलनाडु राज्य के समुद्री तट, तूतीकोरिन बंदरगाह के समीप, मुन्नार की खाड़ी में LiDAR आधारित अपतटीय पवन ऊर्जा संसाधन मापन संबंधित कार्य भी आरम्भ कर दिया है। FOWIND की रिपोर्ट में चिन्हित किए गए ज़ोन जो कि अक्षांश: 8°25'00" उत्तर, देशांतर: 78°12'00"



पूर्व, में LiDAR संस्थापित किया जाएगा। इसे प्रस्तावित स्थल पर हाइड्रोलिक मार्गदर्शक और ड्राइविंग मेकेनिज़म और नाव-जैक-अप पद्धित का उपयोग करते हुए संस्थापित किया जाएगा। अपतटीय LiDAR की क्रय प्रक्रिया आरम्भ कर दी गई है और रक्षा मंत्रालय, गृह मंत्रालय, विदेश मंत्रालय और अंतरिक्ष विभाग से प्रस्तावित क्षेत्र हेतु अपेक्षित स्वीकृति प्राप्त कर ली गई है। आवेदन पत्र को, तीव्र पर्यावरण प्रभाव ऑकलन रिपोर्ट के साथ तमिलनाडु मैरीटाइम बोर्ड (TMB) और तमिलनाडु राज्य तटीय क्षेत्र प्रबंधन प्राधिकरण (TSCZMA) को, प्रस्तुत किया गया है।





ज़ोन - अ, प्रस्तावित क्षेत्र का दृश्य

# III) गुजरात राज्य और तमिलनाडु राज्य के समुद्र तट की भूभौतिकीय और भू-तकनीकी जांच

गुजरात राज्य और तिमलनाडु राज्य के दोनों समुद्र तटों का भौतिकीय तथा भू-तकनीकी सर्वेक्षण और अध्ययन करने एवं उप समुद्र की रूपरेखा को समझने का राष्ट्रीय पवन ऊर्जा संस्थान का प्रस्ताव है। FOWIND की रिपोर्ट में दर्शाए गए गुजरात और तिमलनाडु राज्यों के समुद्री तटों के पूर्ण क्षेत्र-अ का भूभौतिकीय और भू-तकनीकी अध्ययन किया जाएगा। निविदा बोली पूर्व में ज़ारी की गई थी और संभावित बोलीदाताओं के साथ पूर्व बोली बैठक आयोजित की गई थी। संभावित बोलीदाताओं के द्वारा पूछे गए प्रश्न / स्पष्टीकरण आदि स्थायी तकनीकी सिमित (एसटीसी) के विशेषज्ञों की टीम के समक्ष प्रस्तुत किए गए और शुद्धिपत्र को अंतिम रूप दिया जा चुका है एवं शीघ्र ही इसे राष्ट्रीय पवन ऊर्जा संस्थान की वेबसाइट पर अपलोड किया जाएगा। उपर्युक्त अध्ययन की दिनांक के पश्चात भारत में अपतटीय पवन ऊर्जा क्षेत्रों के विकास के लिए अंतर्राष्ट्रीय प्रतिस्पर्धी बोली (आईसीबी) के ब्लॉक के आवंटन हेतु उपयोगी संकेत दिखाई देंगे।



शुद्धिपत्र को अंतिम स्वरूप प्रदान करते हुए स्थायी तकनीकी समिति (एसटीसी)।

# पवन ऊर्जा संसाधन निर्धारण

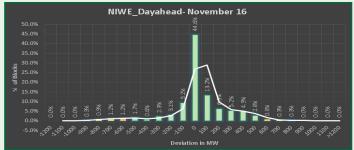
अक्तूबर – दिसम्बर 2016 की अवधि में तमिलनाडु राज्य में 7 पवन ऊर्जा निगरानी स्टेशन (WMS) बंद किए गए (गुजरात में 2, राजस्थान में 1 और छत्तीसगढ़ में 4)। वर्तमान समय में, नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) और विभिन्न उद्यमियों द्वारा वित्त पोषित विभिन्न पवन ऊर्जा निगरानी परियोजनाओं के अंतर्गत, 10 राज्यों में 30 पवन ऊर्जा निगरानी स्टेशन प्रचालन कार्य कर रहे हैं।

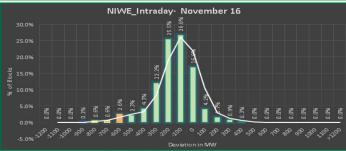
निम्नलिखित परामर्श परियोजनाएं पूर्ण की गईं और इस अवधि में रिपोर्ट प्रस्तुत की गई;

- 21 क्षेत्रों के लिए पवन ऊर्जा निगरानी की प्रक्रिया का सत्यापन।
- 10 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र परियोजनाओं के लिए परामर्श सेवाएं।
- प्रस्तावित 274.4 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र परियोजनाओं के लिए ऊर्जा निर्धारण।
- प्रस्तावित 100 मेगावॉट पवन ऊर्जा टरबाइन क्षेत्र हेतु तकनीकी सम्यक-उद्यम किया गया।

### वेब पोर्टल अद्यतन कार्य

- नवीन और नवीकरणीय ऊर्जा मंत्रालय की वेब-पोर्टल पर स्टेशनों का आँकड़ा-प्रबंधन अद्यतन किया गया।
- तटवर्ती आँकड़ों के वेब-पोर्टल पर निःशुल्क अवलोकन हेतु विकास एवं परीक्षण किया गया।


# पवन ऊर्जा-विद्युत ऊर्जा पूर्वानुमान सेवाएं


- राष्ट्रीय पवन ऊर्जा संस्थान में NCMRWF संख्यात्मक प्रणाली का कार्यान्वयन पूर्ण किया गया।
- NCMRWF संख्यात्मक प्रणाली में 103 उपस्टेशनों में 26 किलोमीटर के रिज़ोल्यूशन पर 10 मीटर और 50 मीटर हब ऊँचाई पर विद्युत वक्र तैयार किया गया।
- वास्तविक उत्पादन आँकड़ा रिपोर्ट निगरानी प्रणाली का कार्य पूर्ण किया गया।



### 'पवन' - 51वां अंक अक्तूबर - दिसम्बर 2016

- अक्तूबर और नवम्बर 2016 माह के लिए वास्तविक उत्पादन आँकड़ा रिपोर्ट IWPA को प्रेषित की गई।
- अनुकूलित 103 उपस्टेशनों में हब ऊँचाई पर विद्युत वक्र कार्य पूर्ण किया गया।
- निर्मित विद्युत वक्र मॉडल के मान्यकरण का कार्य पूर्ण किया गया।

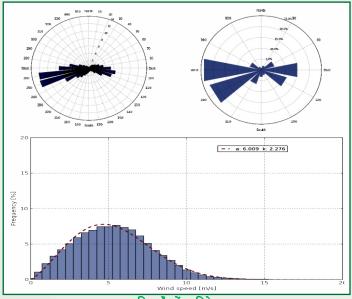




पूर्वानुमान ग्राफ

# पवन ऊर्जा संसाधन निर्धारण (WRA) के वर्ष 2016-17 में अछूते / नएक्षेत्र

- संशोधित स्वीकृति आदेश और प्रथम अंशिका सभी पूर्वोत्तर क्षेत्र की राज्य नोडल ऐजेंसियों के लिए ज़ारी की गई।
- 250 एनिमोमीटर और 50 आँकड़ा संग्रहकर्त्ताओं का आंतरिक निरीक्षण पूर्ण किया गया।
- सेंसरों (तापमान, पॉरेनोमीटर और दबाव) का आंतरिक निरीक्षण पूर्ण किया गया।


# पवन ऊर्जा संसाधन निर्धारण (WRA) एकक में अनुसंधान एवं विकास की प्रगति

- SODAR के नियमित रखरखाव का कार्य किया गया है।
- मनमेलकुडि क्षेत्र में पवन ऊर्जा निगरानी स्टेशन के परिवहन एवं संस्थापना का कार्य किया गया।
- थोवलै क्षेत्र को पवन ऊर्जा संसाधन निर्धारण अनुसंधान के सिविल कार्य हेतु चिह्नित किया गया।
- ट्राइटन SODAR को कल्लुनिर्कुलम क्षेत्र से कायथर पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में लाया गया।

### 100 मीटर ऊँचाई के WPP का निर्धारण और मान्यकरण

राष्ट्रीय पवन ऊर्जा संस्थान द्वारा 'पवन ऊर्जा विद्युत संभावना, निर्धारण और मान्यकरण परियोजना' के अंतर्गत, भारत के 7 राज्यों में 100 मीटर ऊँचाई के, 75 पवन ऊर्जा निगरानी स्टेशन संस्थापित किए गए हैं। (10 आंध्र प्रदेश में, 12 गुजरात में, 12 राजस्थान में, 13 कर्नाटक में, 8 महाराष्ट्र में, 8 मध्य प्रदेश में और 12 तमिलनाडु में)। आकड़ों के अधिग्रहण का कार्य प्रगति पर है।

- देश के विभिन्न क्षेत्रों के; 8 पवन ऊर्जा निगरानी स्टेशनों से 3 वर्षों के निरंतर आकड़ों के अधिग्रहण (3 आंध्र प्रदेश में, 1 गुजरात में, 2 महाराष्ट्र में और 2 कर्नाटक में); 46 पवन ऊर्जा निगरानी स्टेशनों से अधिग्रहण (9 कर्नाटक में, 3 मध्य प्रदेश में, 7 गुजरात में, 11 तमिलनाडु में, 2 महाराष्ट्र में, 6 आंध्र प्रदेश में और 8 राजस्थान में); 15 पवन ऊर्जा निगरानी स्टेशनों से अधिग्रहण (1 आंध्र प्रदेश में, 4 गुजरात में, 2 मध्य प्रदेश में, 3 महाराष्ट्र में और 2 कर्नाटक में); एक वर्ष के निरंतर आकड़ों के अधिग्रहण का कार्य सफलतापूर्वक पूर्ण किया गया।
- भारत के 5 राज्यों में, 13 पवन ऊर्जा निगरानी स्टेशनों की, सतत निगरनी का कार्य किया जा रहा है और वास्तविक समय पवन ऊर्जा के आँकड़े प्राप्त किए जा रहे हैं।
- पवन ऊर्जा के मासिक आँकड़ों का विश्लेषण, सत्यापन और अंतरिम रिपोर्ट तैयार करने का कार्य प्रगति पर है।
- 62 पवन ऊर्जा निगरानी स्टेशनों से सेंसर और मस्तूल निराकरण का कार्य प्रगति पर है।



मासिक आँकड़ों का विश्लेषण

## पवन ऊर्जा संसाधन निर्धारण अध्ययन

- मैसर्स NTPC के लिए, कर्नाटक राज्य में कुडगी क्षेत्र हेतु, ड्राफ्ट और अंतरिम रिपोर्ट तैयार की गई।
- दून विश्विद्यालय के लिए अंतरिम रिपोर्ट प्रेषित की गई।

### समझौता ज्ञापन - हस्ताक्षर

दिनांक 7 अक्टूबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में तकनीकी परामर्श सेवाओं के लिए राष्ट्रीय पवन ऊर्जा संस्थान और राष्ट्रीय हॉइड्रोइलेक्ट्रिक पॉवर कॉरपोरेशन (एनएचपीसी) के मध्य पवन ऊर्जा एवं सौर ऊर्जा परियोजनाओं के विकास हेतु समझौता ज्ञापन पर हस्ताक्षर किए गए।

### अन्य कार्यक्रम

• दिनांक 18 अक्तूबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में IWPA / TANGEDCO के अधिकारियों के साथ पवन ऊर्जा पूर्वानुमान विषय पर बैठक में विचार-विमर्श किया गया।



- दिनांक 7 से 18 नवम्बर 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में यूगांडा देश के ऊर्जा और खनिज विभाग के अधिकारियों को पवन ऊर्जा संसाधन एवं निर्धारण एकक के वैज्ञानिकों और इंजीनियरों ने "पवन ऊर्जा संसाधन एवं निर्धारण और पवन ऊर्जा टरबाइन क्षेत्र योजना" विषय पर प्रशिक्षण प्रदान किया।
- दिनांक 9 से 10 नवम्बर 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में मैसर्स ANERT के अधिकारियों को पवन ऊर्जा संसाधन एवं निर्धारण एकक के वैज्ञानिकों और इंजीनियरों ने "पवन ऊर्जा संसाधन एवं
- निर्धारण" विषय पर प्रशिक्षण प्रदान किया।
- दिनांक 18 अक्तूबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में श्री ए जी रंगराज ने जर्मन प्रतिनिधि मंडल के साथ पवन ऊर्जा एवं विद्युत पूर्वानुमान विषय पर विचार-विमर्श किया।
- दिनांक 26 नवम्बर 2016 को असम राज्य, गुवाहाटी में और दिनांक 1 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में पूर्वोत्तर क्षेत्र के लिए परियोजना सहायकों के पद हेतु साक्षात्कार आयोजित किया गया।

# पवन ऊर्जा टरबाइन परीक्षण

- राष्ट्रीय पवन ऊर्जा संस्थान और मैसर्स एक्स्नॉन टेक्नोलॉजीज लिमिटेड कम्पनी के मध्य एक समझौते पर हस्ताक्षर किए गए जिसके अनुसार मध्य प्रदेश राज्य के रतलाम जिले के रिचादेवड़ा क्षेत्र में मैसर्स एक्स्नॉन टेक्नोलॉजीज लिमिटेड कम्पनी के XYRON 1000 किलोवॉट के संयंत्र के संरचनात्मक ढाँचे का पवन ऊर्जा टरबाइन-प्रकार परीक्षण किया गया। उपकरणीकरण प्रक्रिया कार्य प्रगति पर है।
- आंध्र प्रदेश में कुडप्पा जिले के बडवल ग्राम में 1700 किलोवॉट के जीई /1700/103 मॉडल के लिए पवन ऊर्जा टरबाइन हेतु क्षेत्र अंशाकंन, विद्युत वक्र मापन और क्षेत्र व्यवहार्यता अध्ययन (एसएफएस) हेतु राष्ट्रीय पवन ऊर्जा संस्थान और मैसर्स टी यू वी इंडिया प्राइवेट लिमिटेड के मध्य एक समझौते पर हस्ताक्षर किए गए।
- गुजरात में अमरेली जिले के सावरकुंडला में 2000 किलोवॉट के आईनॉक्स डीएफ /200/113 मॉडल के लिए पवन ऊर्जा विद्युत वक्र मापन और क्षेत्र व्यवहार्यता अध्ययन (एसएफएस) हेतु राष्ट्रीय पवन ऊर्जा संस्थान और मैसर्स ATRIA पवन ऊर्जा (सावरकुंडला) प्राइवेट लिमिटेड के मध्य एक समझौते पर हस्ताक्षर किए गए।

मानक और प्रमाणन

- विभिन्न पवन ऊर्जा टरबाइन निर्माताओं के 50 से भी अधिक पवन ऊर्जा टरबाइन मॉडल्स के प्रलेखन / जानकारियाँ प्राप्त की गईं। दस्तावेज की समीक्षा / सत्यापन के पश्चात संशोधित मुख्य सूची तैयार करने का कार्य पूर्ण किया गया।
- मानक और प्रमाणन एकक के निदेशक एवं प्रमुख एवं मानक और प्रमाणन एकक के अभियंताओं ने RLMM प्रक्रिया के संदर्भ में 2 पवन ऊर्जा टरबाइन निर्माताओं की निर्माण सुविधाओं का सत्यापन किया।
- RLMM समिति की बैठक का आयोजन किया गया।
- दिनांकित 26.10.2016 की 'संशोधित मॉडल और निर्माताओं की सूची'(RLMM) –को मुख्य सूची के साथ, विभिन्न हितधारकों को प्रेषित किया गया, जिनमें पवन ऊर्जा टरबाइन निर्माता, राज्य विद्युत बोर्डस, TRANSCOS और राज्य नोडल एजेंसियाँ आदि भी शामिल हैं। दिनांकित 26.10.2016 की 'संशोधित मॉडल और निर्माताओं की मुख्य सूची'(RLMM) –को राष्ट्रीय पवन ऊर्जा संस्थान की वेबसाइट में भी अपलोड किया गया।
- अक्तूबर 2016 तक अद्यनित की गई भारत में पवन ऊर्जा टरबाइन मॉडल और पवन ऊर्जा टरबाइन प्रकार प्रमाणन सिहत विपणन निर्माताओं की समेकित सूची तैयार गई और इसे राष्ट्रीय पवन ऊर्जा संस्थान की वेबसाइट में अपलोड किया गया।
- नवीन और नवीकरणीय ऊर्जा मंत्रालय के दिनांक 22.10.2016 के दिशा-निर्देशों के अनुसार अब 'संशोधित मॉडल और निर्माताओं की मुख्य सूची' (RLMM) का कार्य नवीन और नवीकरणीय ऊर्जा मंत्रालय द्वारा किया जाता है।
- राष्ट्रीय पवन ऊर्जा संस्थान और मैसर्स सदर्न विंड फार्मस लिमिटेड कम्पनी के मध्य "GWL 225" के प्रमाण पत्र के नवीकरण हेतु परियोजना के संबंध में टीएपीएस-2000 (संशोधित) के अंतर्गत किए गए समझौता-

ज्ञापन पर हस्ताक्षर किए गए।

- "पवन ऊर्जा टरबाइन ध्वनिक शोर मापन तकनीक" का संशोधन किया गया और भारतीय मानक ब्यूरो (बीआईएस) को इसका भारतीय मानक मसौदा प्रेषित किया गया। भारतीय मानक ब्यूरो द्वारा प्रदान किए गए संशोधित ड्राफ्ट दस्तावेज़ के आधार पर, भारतीय मानक संशोधित मसौदा के लिए अनुमोदन पवन ऊर्जा टरबाइन अनुभागीय समिति (ईटी 42) के अध्यक्ष / राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक द्वारा भारतीय मानक ब्यूरो (बीआईएस) को सूचित किया गया।
- पवन ऊर्जा टरबाइन पर आईईसी मसौदा दस्तावेजों की समीक्षा के संबंध में मानक निर्धारण हेतु भारतीय मानक ब्यूरो (बीआईएस) और कार्य समूह के सदस्यों के साथ समन्वय कार्य प्रगति पर है।
- मतदान की सिफारिशें और IEC मानक के 4 मसौदे / प्रलेखन तैयार किए गए और भारतीय मानक ब्यूरो को IEC TC 88 को अग्रेषित करने हेतु प्रेषित किया गए।
- नवीन और नवीकरणीय ऊर्जा मंत्रालय के दिशा-निर्देशों के अनुसार भारत में प्रोटोटाइप पवन ऊर्जा टरबाइन की संस्थापना के विषय में एक पवन ऊर्जा टरबाइन निर्माता से प्राप्त प्रोटोटाइप पवन ऊर्जा टरबाइन मॉडल के दस्तावेज की समीक्षा/सत्यापन का कार्य प्रगति पर है।
- नवीन और नवीकरणीय ऊर्जा मंत्रालय के दिशा-निर्देशों के अनुसार "ग्रिड नियमन 2007 में कनेक्टिविटी के लिए सीईए तकनीकी मानक में ड्राफ्ट -दूसरा संशोधन" सीईए को प्रस्तुत करने हेतु टिप्पणी तैयार की गई।
- मैसर्स टीयूवी राईनलैंड (इंडिया) प्राइवेट लिमिटेड और मैसर्स टीयूवी राईनलैंड इंडस्ट्री सर्वीस जीएम बी एच के साथ प्रमाणन और पारस्परिक सहयोग एवं विचार-विमर्श प्रगति पर है।
- गुणवत्ता प्रबंधन प्रणाली में निरंतर सुधार किए जाने संबंधी कार्य किए जा रहे हैं।



# पवन ऊर्जा टरबाइन अनुसंधान स्टेशन

- त्वरा गित पवन ऊर्जा मौसम-2017 के लिए, कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन' में, 200 किलोवॉट के 9 MICON पवन ऊर्जा विद्युत जनरेटर्स और 400 वॉट / 11 किलोवॉट के 9 MICON ट्रांसफार्मरस, ट्रांसमीशन लाइनों की अनुकूलनता आदि सहित पवन ऊर्जा विद्युत जनरेटर्स का कार्य प्रचालन और रखरखाव तैयारी आदि कार्य सफलतापूर्वक पूर्ण कर लिया गया है, और सभी मशीनें त्वरा गित पवन ऊर्जा मौसम-2017 के लिए तैयार हैं, जिससे कि उत्पादित विद्युत को ग्रिड में संचारित करने संबंधी कार्य सुचारू और निर्बाध रूप से कार्य करते रहें।
- कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन' में 75 kWp सौर ऊर्जा पीवी विद्युत की ग्रिड एकीकरण संस्थापना का कार्य 27 वर्ष पुराने 200 किलोवॉट मॉइकॉन में पवन ऊर्जा टरबाइन पर पूर्ण किया गया जिससे कि कायथर में भूमि, ट्रांसफार्मर, पारेषण लाइनों आदि वर्तमान बुनियादी ढांचे का श्रेष्ठतम उपयोग किया जाए। पवन ऊर्जा और सौर ऊर्जा के अभिन्न भागों के लिए स्मार्ट नियंत्रक हेतु एकीकरण के अंतर्गत सामान्य युग्मन बिंदु पर कार्य प्रगति पर है।



75 kWp सौर ऊर्जा पीवी विद्युत की ग्रिड एकीकरण युक्त 200 किलोवॉट पवन ऊर्जा टरबाइन

स्मार्ट नियंत्रक हेतु एकीकरण

# आगंतुक

- 18 अक्तूबर 2016 को नीदरलैंड की कम्पनी मैसर्स हुट्सल्क्स के निदेशक श्री केज ने अध्ययन-भ्रमण किया।
- 18 अक्तूबर 2016 को चेन्नई में जर्मनी वाणिज्य दूतावास के श्री फ़ेबग, जर्मन मंत्री डॉ हबीक और जर्मन प्रतिनिधि मंडल ने अध्ययन-भ्रमण किया।

# पुरस्कार



- दिनांक 18 नवंबर 2016 को चेन्नई स्थित सविता विश्विद्यालय ने डॉ एस गोमतिनायगम को पवन ऊर्जा अनुसंधान और संस्थागत क्षमता निर्माण हेतु 'लाइफटाइम अचीवमेंट अवार्ड" से सम्मानित किया।
- दिनांक 23 नवंबर 2016 को मुंबई में सतत महाराष्ट्र द्वारा आयोजित 'भारत सतत लीडरशिप समिट और पुरस्कार' कार्यक्रम में डॉ पी कनगवेल को "भारतीय सस्टेनेबल लीडरशिप अवार्ड" से सम्मानित किया गया।
- डॉ पी कनगवेल को स्वीडन की LIFE अकादमी द्वारा 'चेंज एजेंट ऑफ दी इयर-2016' पुरस्कार से सम्मानित किया गया।





# सूचना, प्रशिक्षण और अनुकूलित सेवाएं

### 20वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम

7 से 11 नवम्बर 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान ने "पवन ऊर्जा प्रौद्योगिकी" विषय पर पाँच दिवसीय 20वें राष्ट्रीय प्रशिक्षण कार्यक्रम का सफलतापूर्वक आयोजन किया, इसमें पवन ऊर्जा से संबंधित विषयों को संबोधित किया गया जैसे पवन ऊर्जा और उसका परिचय, पवन ऊर्जा प्रौद्योगिकी, पवन ऊर्जा संसाधन निर्धारण, संस्थापना, प्रचालन और रखरखाव, पवन ऊर्जा क्षेत्रों के विभिन्न पहलु और वित्तीय विश्लेषण आदि। इस प्रशिक्षण पाठ्यक्रम कार्यक्रम में देश के 9 राज्यों के, विविध पृष्ठभूमि के, 38 प्रतिभागियों ने भाग लिया। इस राष्ट्रीय प्रशिक्षण कार्यक्रम का उद्घाटन तमिलनाडु ऊर्जा विकास एजेंसी (टीईडीए) के अध्यक्ष और प्रबंध निदेशक डॉजगमोहन सिंह राज, आईएएस, ने किया।



उद्घाटन भाषण देते हुए मुख्य अतिथि।

उपर्युक्त समापन समारोह में चेन्नई स्थित 'राष्ट्रीय तकनीकी शिक्षक प्रशिक्षण एवं अनुसंधान संस्थान (NITTTR)' के निदेशक प्रो. सुधींद्र नाथ पांडा मुख्य अतिथि थे उन्होंने सभी प्रतिभागियों को पाठ्यक्रम प्रमाण-पत्र प्रदान किए।



प्रतिभागियों को पाठ्यक्रम प्रमाण-पत्र प्रदान करते हुए मुख्य अतिथि।

### युगांडा देश के अधिकारियों के लिए विशेष प्रशिक्षण पाठ्यक्रम

दिनांक 7 से 18 नवंबर 2016 की अवधि में "पवन ऊर्जा संसाधन निर्धारण और पवन ऊर्जा टरबाइन क्षेत्र योजना" विषय पर विशेष प्रशिक्षण पाठ्यक्रम सफलतापूर्वक आईटीसी इकाई ने पवन ऊर्जा संसाधन निर्धारण इकाई के सहयोग से आयोजित किया। यह विशेष प्रशिक्षण पाठ्यक्रम कार्यक्रम युगांडा देश के ऊर्जा मंत्रालय और खनिज विभाग (MEMD) के 3 अधिकारियों के लिए आयोजित किया गया था। इस विशेष प्रशिक्षण पाठ्यक्रम कार्यक्रम में पवन ऊर्जा संसाधन निर्धारण परिचय, पवन ऊर्जा संसाधन निर्धारण तकनीक, पवन ऊर्जा निगरानी स्टेशनों के लिए क्षेत्र चयन, पवन ऊर्जा संसाधन मापन, संस्थापना, उपकरणीकरण, पवन ऊर्जा टरबाइन निगरानी स्टेशन की संस्थापना, मेट मस्तूल और सुदूर सेंसिंग उपकरण (SODAR और LiDAR) का उपयोग करते हुए अति आधुनिक मापन तकनीक, आँकड़ा वैश्लेषिकी और प्रसंस्करण, पवन ऊर्जा आँकड़ा विश्लेषण उपयोग हेतु सॉफ्टवेयर उपकरण, डिजाइन और लेआउट, पवन ऊर्जा पूर्वानुमान और पवन ऊर्जा उत्पादन आदि तकनीकी विषय थे।



पवन ऊर्जा संसाधन निर्धारण / मानचित्रण प्रयोगाशाला में प्रतिभागीगण

प्रशिक्षण-अध्ययन भ्रमण हेतु 120 मीटर मेट- मस्तूल और पवन ऊर्जा संसाधन निर्धारण हेतु प्रयोग किए जाने वाले तेनकाशी स्थित SODAR उपकरण साधन आदि व्यवस्था प्रदर्शित करने के लिए कायथर स्थित पवन ऊर्जा टरबाइन परीक्षण / अनुसंधान स्टेशन में सभी प्रतिभागियों को ले जाया गया।



राष्ट्रीय पवन ऊर्जा संस्थान के अधिकारियों के साथ प्रतिभागीगण

प्रशिक्षण पाठ्यक्रम संरचना और इसके संचालन की अत्यधिक प्रतिभागियों द्वारा सराहना की गई। सभी प्रतिभागीगण व्याख्यान, व्यावहारिक सत्र और राष्ट्रीय पवन ऊर्जा संस्थान और भारत के आतिथ्य की गुणवत्ता से बहुत अधिक संतुष्ट थे।



### एमएनआरई वैज्ञानिकों के लिए प्रशिक्षण

नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) में भर्ती 11 नए वैज्ञानिकों के लिए दिनांक 7 से 8 अक्टूबर 2016 की अवधि में प्रवेश प्रशिक्षण कार्यक्रम का आयोजन सफलतापूर्वक किया गया।

#### आगामी प्रशिक्षण

राष्ट्रीय पवन ऊर्जा संस्थान कैलेंडर वर्ष 2016-17 की अवधि में निम्नलिखित राष्ट्रीय और अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम आयोजित किए जाएंगे और इस पाठ्यक्रम के सफल आयोजन कार्य हेत् आवश्यक तैयारी का कार्य प्रगति पर हैं।

|         | राष्ट्रीय प्रशिक्षण पाठ्यक्रम                                          |                 |                   |                       |  |
|---------|------------------------------------------------------------------------|-----------------|-------------------|-----------------------|--|
| क्र.सं. | विवरण                                                                  | प्रशिक्षण आरम्भ | प्रशिक्षण समाप्ति | <b>प्रशिक्षण</b> अवधि |  |
| 1.      | 21वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम। – विषय: पवन ऊर्जा प्रौद्योगिकी।   | 20.03.2017      | 24.03.2017        | 5 दिन                 |  |
|         | अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्र                                      | Я               |                   |                       |  |
| 1.      | 19वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम। विषय: पवन ऊर्जा प्रौद्योगिकी | 01.02.2017      |                   | 0                     |  |
|         | और अनुप्रयोग। ITEC / SCAAP सहभागी देशों के लिए।                        |                 | 28.02.2017        | 28 दिन                |  |
| 2.      | विशेष अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम। विषय: पवन ऊर्जा प्रौद्योगिकी |                 |                   |                       |  |
|         | और अनुप्रयोग। AIFS-III कार्यक्रम के अंतर्गत अफ्रीकी देशों के लिए।      | 01.02.2017      | 24.02.2017        | 24 दिन                |  |

#### प्रदर्शनी

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा पवन ऊर्जा की गतिविधियों और सेवाओं के विषय में जागरूकता प्रसारित करने के उद्देश्य से निम्नलिखित प्रदर्शनियों में अपने कक्ष स्थापित किए गए और विविध विधाओं के आगंतुकों ने संस्थान की सेवाओं के बारे में जानकारी प्राप्त की।

 06 से 10 अक्तूबर 2016 की अविध में गुजरात राज्य, वडोदरा में "स्विच ग्लोबल एक्स्पो" - अंतर्राष्ट्रीय ऊर्जा सम्मेलन का आयोजन किया गया।





19 से 21 अक्तूबर 2016 की अविध में मुम्बई में, इंटरसोलर भारत में,
 "आईजीईपी प्रदर्शनी हुसम पवन ऊर्जा भारत - 2016" प्रदर्शनी का
 आयोजन किया गया।

### विद्यार्थियों का संस्थान में शैक्षिक-भ्रमण

अक्तूबर से दिसम्बर 2016 की अवधि में राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा पवन ऊर्जा की गतिविधियों और सेवाओं के विषय में जागरूकता प्रसारित करने के उद्देश्य से निम्नलिखित विद्यालय और महाविद्यालय के विद्यार्थियों के शैक्षिक-भ्रमण हेतु समन्वय कार्यक्रम आयोजित किए गए। संस्थान के परिसर में नवीकरणीय ऊर्जा की सुविधाओं के विषय में विस्तार से प्रदर्शन किया गया।

- 10 नवंबर 2016 को चेन्नई, तारामणी स्थित 'राष्ट्रीय तकनीकी शिक्षक प्रशिक्षण एवं अनुसंधान' (एनआईटीटीटीआर) से 17 प्रशिक्षण (शिक्षक) प्रतिभागियों ने शैक्षिक, अध्ययन-भ्रमण किया।
- 2 दिसम्बर 2016 को चेन्नई, पेरुंगलाथुर स्थित 'जीकेएम कॉलेज ऑफ इंजीनियरिंग' के 25 (संकाय सदस्य) प्रतिभागियों ने शैक्षिक, अध्ययन- भ्रमण किया।
- 5 दिसंबर 2016 को चेन्नई स्थित 'अक्षय मैट्रिकुलेशन हायर सेकेंडरी स्कूल' से 43 विद्यार्थियों और 9 कार्मिकों ने अध्ययन-भ्रमण किया।
- 21 दिसंबर 2016 को नागपुर स्थित 'राजीव गांधी अभियांत्रिकी और अनुसंधान महाविद्यालय' के 44 विद्यार्थियों ने अध्ययन-भ्रमण किया।

### विद्यार्थियों को इंटर्नशिप

- दिनांक 29 नवम्बर से 9 दिसंबर 2016 तक दो सप्ताह की अवधि में चेन्नई
   स्थित 'पीएसजी इंस्टीट्यूट ऑफ टेक्नोलॉजी और एप्लाइड रिसर्च' से
   2 विद्यार्थियों ने आईटीसीएस एकक में अपनी इंटर्नशिप पूर्ण की।
- विदेशी विद्यार्थियों के लिए 6 माह के लिए प्रशिक्षण फेलोशिप आवेदन पत्र विकासशील देशों के वैज्ञानिकों के लिए अनुसंधान प्रशिक्षण फैलोशिप (RTF-DCS) योजनाओं के अंतर्गत राष्ट्रीय पवन ऊर्जा संस्थान में शोध कार्य हेतु चयनित किए गए इसके अंतर्गत सेनेगल देश के फन्न हॉक की सुश्री नोगोये डिआव ने दिनांक 15 नवम्बर 2016 से प्रवेश लिया और अपना शोध-कार्य आरम्भ किया।

#### समझौता जापन

दिनांक 15 नवम्बर 2016 को 3 वर्ष की अवधि के लिए तिरुनेलवेली स्थित 'शासकीय अभियांत्रिकीय महाविद्यालय'के साथ शैक्षिक और अनुसंधान उद्देश्यों के लिए समझौता ज्ञापन पर हस्ताक्षर किए गए।

### नीवे NIWI

# अभियांत्रिकीय सेवा प्रभाग

- 28 नवंबर 2016 को "डिजिटल इंडिया" कार्यशाला का आयोजन कोयला मंत्रालय द्वारा दृश्य-श्रव्य सम्मेलन कक्ष के माध्यम से समन्वयित किया गया, इसमें भारत सरकार द्वारा भारत के नागरिकों के लिए सरकारी सेवाएं ऑनलाइन उपलब्ध करवाने हेतु एक अभियान आरम्भ किया गया।
- राष्ट्रीय पवन ऊर्जा संस्थान को नवीन और नवीकरण ऊर्जा मंत्रालय के सचिव द्वारा राष्ट्र को समर्पित किया गया। इस संदर्भ में 2 त्रीभाषी (तिमल, हिंदी एवं अंग्रेजी) शिलालेख बनवाए गए, एक शिलालेख संस्थान परिसर के मुख्य द्वार के समीप और एक शिलालेख मुख्य भवन के स्वागत-कक्ष के समीप लगाया गया।
- नवीन और नवीकरण ऊर्जा मंत्रालय के दिनांक 6 सितम्बर 2016 के पत्रांक के अनुसरण में ऊर्जा लेखा-परीक्षा की गई जिससे कि ऊर्जा -उपभोग में कमी की जाए। चेन्नई स्थित 'मैसर्स एनएसआईसी तकनीकी सेवा केंद्र' के द्वारा लेखा-परीक्षा पूर्ण की गई।



राष्ट्रीय पवन ऊर्जा संस्थान परिसर के मुख्य द्वार का शिलालेख

#### सिविल कार्य

- राष्ट्रीय पवन ऊर्जा संस्थान परिसर के अग्रभाग की ओर परिदृश्य (लैंडस्केपिंग) हेतु भू-निर्माण कार्य आरम्भ किया गया।
- राष्ट्रीय पवन ऊर्जा संस्थान परिसर के भवन के ब्लॉक II और III के छत के शीर्ष पर मध्य भाग को आपस में जोड़ने, पुल निर्माण हेतु प्रावधान करने, का कार्य आरम्भ किया गया, इस प्रक्रिया से छत संस्थापित उच्च वर्ण संकर प्रणाली के समीप जाने में सुविधा होगी।
- राष्ट्रीय पवन ऊर्जा संस्थान के जलपान-गृह में 'टर्बो छत वेंटिलेटर' का प्रावधान किया गया जिससे विद्युत का उपयोग किए बिना जलपान-गृह की गर्म हवा को बाहर निकाला जा सकेगा।
- राष्ट्रीय पवन ऊर्जा संस्थान के मुख्य द्वार से सुरक्षा गार्द द्वार के मध्य की 'प्रबलित सीमेंट कंक्रीट (आरसीसी)' की सड़क निर्माण बनाने हेत् क्रय

माँग-पत्र प्रेषित किया गया।



वृहदाकार अक्षरों में

## सामान्य रखरखाव कार्य:

 राष्ट्रीय पवन ऊर्जा संस्थान परिसर के अग्रभाग की ओर के भू-भाग स्तर को समतल करने और उसके किनारों को सिमेंट ठोस ब्लाक से विशेष-आगुंतकों के कार पार्किंग बनाने हेतु आवश्यक क्रय माँग-पत्र प्रेषित किया गया।

# सौर ऊर्जा विकिरण संसाधन निर्धारण

- माइक्रोसिटिंग हेतु बिकानेर और कारवॉड स्थित भारतीय प्रौद्योगिकी संस्थान जोधपुर के नवीन परिसर में मथानिया और वर्तमान भारतीय प्रौद्योगिकी संस्थान जोधपुर स्टेशनों के स्थानांतरण हेतु क्षेत्र भ्रमण किया गया।
- 2. 17 सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशनों के एसडीएपीएस नीति के अंतर्गत गुणवत्ता नियंत्रित आँकड़े प्रदान किए गए।
- 4 पायरोमीटर और 2 पिरेलिओमीटर के अंशांकन वाणिज्यिक मोड के अंतर्गत किए गए और 9 पायरोमीटर के अंशांकन सौर ऊर्जा विकिरण संसाधन निर्धारण परियोजना के अंतर्गत किए गए।



कोचिन में एसएलडीपीसी बैठक का दृश्य

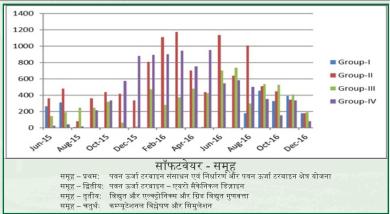


# ज्ञान - हस्तांतरण प्रबंधन और लघु पवन ऊर्जा उच्च वर्ण संकर प्रणाली

राष्ट्रीय पवन ऊर्जा संस्थान-कार्य समूह द्वारा इंटर्नशिप और थीसिस परियोजना के मार्गदर्शन के साथ-साथ संयोजक के रूप में वैज्ञानिक और तकनीकी अनुसंधान सरल कार्य-कौशल साझाकरण गतिविधियाँ राष्ट्रीय पवन ऊर्जा संस्थान की सभी इकाइयों के साथ समन्वय एवं सुविधाएं प्रदान करने में यह कार्य समूह एक महत्वपूर्ण भूमिका निभाता है और इकाइयों के लिए अनुसंधान परिप्रेक्ष्य में कार्य करता है।

### प्रौद्योगिकी मनन मंथन




प्रौद्योगिकी मनन मंथन (TTT) व्याख्यान का एक दृश्य

राष्ट्रीय पवन ऊर्जा संस्थान अपने यहाँ प्रौद्योगिकी मनन मंथन (TTT) के निर्देशों के अनुरूप व्याख्यान श्रृंखला के अंतर्गत प्रत्येक गुरुवार को ज्ञान-हस्तांतरण व्याख्यान श्रृंखला की कड़ी में एक नए विषय के माध्यम से प्रतिभागियों के समक्ष व्याख्यान प्रस्तुत करता है। राष्ट्रीय पवन ऊर्जा संस्थान के सम्मेलन कक्ष में 86 से अधिक इस जीवंत-चर्चा व्याख्यान श्रृंखला में व्याख्यान प्रस्तुत किए जा चुके हैं। इस तिमाही में निम्नलिखित तकनीकी व्याख्यान प्रस्तुत किए गए:

| क्र.सं. | दिनांक     | संसाधन-    |                                 |                                               |
|---------|------------|------------|---------------------------------|-----------------------------------------------|
|         |            | सहभाजक एकक | व्याख्याता का नाम               | प्रस्तुति का विषय                             |
| 1       | 06-10-2016 | WRA        | सुश्री डी विद्या & एन शीला रानी | ई-अपशिष्ट और असाधारण विषय                     |
| 2       | 13-10-2016 | OW&IB      | सुश्री ए अजिता                  | पवन ऊर्जा विद्युत संयंत्र हेतु उपकरण – तथ्य   |
| 3       | 20-10-2016 | WTT        | श्री के वर्दाराजन               | पवन ऊर्जा विद्युत प्रणाली अभियंता - संभावनाएं |
| 4       | 27-10-2016 | S&C        | श्री के पारासरन                 | पवन ऊर्जा विद्युत उत्पादन – अर्थशास्त्र ।     |
| 5       | 03-11-2016 | GIZ, GmbH  | श्री अरविन्दक्षण रामानन         | हरित ऊर्जा कॉरिडोर – एक अवलोकन                |
|         |            |            |                                 | और नवीकरणीय ऊर्जा प्रंबंधन केंद्र             |
| 6       | 01-12-2016 | ESD        | श्री सी स्टीफन जेरेमिऑस         | वस्तुओं का इंटरनेट – एक अवलोकन                |

# कार्य समूह – एक कार्य-कौशल मंच

राष्ट्रीय पवन ऊर्जा संस्थान के कार्य समूह ने संस्थान के अभियंताओं और वैज्ञानिकों की गति और उनके उपयोग में सतत वृद्धि देखी है। यह सिक्रय कार्य समूह राष्ट्रीय पवन ऊर्जा संस्थान परिसर में विशेष सुविधाएं प्रदान करता है, यह संस्थान के कार्मिकों को प्रशिक्षित करने हेतु स्थापित किया गया है। इसके सॉफ्टवेयर पार्क में इंडस्ट्री ग्रेड सॉफ्टवेयर उपलब्ध हैं जिसमें उत्सुक प्रौद्योगिकीविद इनके उपयोग के विभिन्न पहलुओं को समझने और सरकार द्वारा निर्धारित लक्ष्यों को प्राप्त करने में एक दूसरे के समीप आते हैं और इस एकमात्र मंच पर एकत्रित होते हुए विचारों का

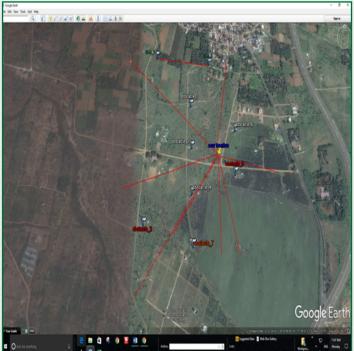




आदान-प्रदान करते हैं। राष्ट्रीय पवन ऊर्जा संस्थान के इस मंच से हो रहे क्षमता निर्माण और इसके बढ़ते योगदान का निम्नानुसार संक्षेप में वर्णन किया गया है। और विभिन्न समूहों द्वारा सॉफ्टवेयर के उपयोग को निम्नवत ग्राफ में देखा जा सकता है जिसका वर्णन संक्षेप में इस प्रकार है:

### इंटर्नशिप और विद्यार्थियों के लिए परियोजनाएं

इस वर्ष 60 से अधिक विद्यार्थियों ने इंटर्नशिप और परियोजना कार्य पूर्ण किया है। पारंपरिक कार्यों में विचार और विचार-प्रक्रिया उस समय प्राप्त की जा सकती है जब उसमें नूतन विचारों का समूह उसमें प्रतिपादित होता रहे। इनमें कुछ की रूचि का कार्य ऊर्जा भंडारण, कुछ का पवन ऊर्जा टरबाइन अनुसंधान क्षेत्र आदि है। तिमलनाडु के कुछ प्रमुख विश्वविद्यालयों से कुछ विद्यार्थी राष्ट्रीय पवन ऊर्जा संस्थान में इस समय कार्य समूह के माध्यम से कार्यरत हैं। नवीन और नवीकरणीय ऊर्जा मंत्रालय के द्वारा उपर्युक्त के अतिरिक्त इंटर्न और इस तरह के कार्य हेतु छात्रवृति देने के प्रावधान की अनुमित प्रदान की गई है। इस संदर्भ में प्रतिभाओं को आकर्षित करने के लिए राष्ट्रीय पवन ऊर्जा संस्थान की सार्वजनिक वेबसाइट पर शीघ्र ही पूर्ण उपर्युक्त विज्ञापन अपलोड किया जाएगा।


### लघु पवन ऊर्जा उच्च वर्ण संकर प्रणाली

- 1. तिमलनाडु राज्य के कर्नांगुलम में क्षेत्र व्यवहार्यता कार्य किया गया, जो कि ग्रिड से जुड़े हुए अपने अक्ष पर लम्बे पवन ऊर्जा टरबाइन के नए मॉडल के लिए सीटू परीक्षण में संचालन हेतु किया गया था। राष्ट्रीय पवन ऊर्जा संस्थान द्वारा अपनी तरह का यह प्रथम लघु पवन ऊर्जा मापन कार्य होगा। आगामी त्वरा-पवन मौसम के अवसर पर यह परीक्षण किया जाना प्रस्तावित है।
- 2. राष्ट्रीय परीक्षण और अंशांकन प्रयोगशाला प्रत्यायन बोर्ड (एनएबीएल) के द्वारा लघु पवन ऊर्जा टरबाइन परीक्षण कार्य प्रगति पर है।
- 3. नवीन और नवीकरणीय ऊर्जा मंत्रालय ने कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में 25 किलोवॉट के लघु पवन ऊर्जा सौर ऊर्जा उच्च वर्ण संकर प्रणाली के अनुसंधान उन्मुखी ग्रिड की संस्थापना हेतु स्वीकृति प्रदान की है। राष्ट्रीय पवन ऊर्जा संस्थान की कायथर स्थित, वृहद पवन ऊर्जा टरबाइन और सौर ऊर्जा उच्च वर्ण संकर प्रणाली अनुसंधान सुविधा, अन्य सुविधाओं की तरह, राष्ट्र को समर्पित है।

## अनुसंधान और विकास परिषद

दिनांक 12 सितंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान की 24वीं अनुसंधान परिषद की बैठक राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में, राष्ट्रीय पवन ऊर्जा संस्थान-अनुसंधान परिषद के अध्यक्ष, 'पाँवर सिस्टम ऑपरेशन कार्पोरेशन लिमिटेड POWERGRID' के मुख्य कार्यपालक अधिकारी श्री एस के सूनी की अध्यक्षता में आयोजित की गई। राष्ट्रीय पवन ऊर्जा संस्थान - अनुसंधान परिषद की नव पुनर्गठित प्रथम बैठक में 2 परियोजनाओं को वित्तिय प्रावधान हेतु चयनित किया गया।





कर्नांगुलम में क्षेत्र व्यवहार्यता कार्य



# राष्ट्रीय पवन ऊर्जा संस्थान के वैज्ञानिकों द्वारा बाह्य मंचो में आमंत्रित व्याख्यान /बैठकों में प्रतिभागिता

### डॉ एस गोमतिनायगम, महानिदेशक

- 4 अक्टूबर 2016 को नई दिल्ली में नीति आयोग के सलाहकार (ऊर्जा) श्री ए के जैन, आईएएस, की अध्यक्षता में भारत के लिए जीआईएस आधारित ऊर्जा मानचित्र तैयार करने के उद्देश्य से आयोजित बैठक में भाग लिया।
- 5 अक्टूबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में भर्ती नियम हेतु आयोजित समिति की बैठक भाग लिया।
- 14 अक्टूबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में RLMM हेतु आयोजित बैठक भाग लिया।
- 24 अक्टूबर 2016 को कोचीन में स्थायी संसदीय समिति की बैठक में भाग लिया।
- 26 और 27 अक्टूबर 2016 की अविध में हैदराबाद में आयोजित उच्च स्तरीय बैठक में, श्री नागेश अय्यर के साथ, भाग लिया।
- 01 नवंबर 2016 को TEDA चेन्नई में 66वीं प्रबंध परिषद की बैठक में भाग लिया।
- 01 नवंबर 2016 को चैन्नई स्थित वैलोर प्रौद्योगिकी संस्थान में व्याख्यान दिया।
- 10 नवंबर 2016 को चेन्नई में आयोजित 'तिमलनाडु नवीकरणीय ऊर्जा सम्मेलन' में 'पवन ऊर्जा नेतृत्व- स्थिति' सत्र के अंतर्गत वक्ता-चर्चा पैनल कार्यक्रम की अध्यक्षता की।
- 11 नवंबर 2016 को पवन ऊर्जा सौर ऊर्जा शिखर सम्मेलन: पवन ऊर्जा
   सौर ऊर्जा उच्च वर्ण संकर क्षमता 10 गीगावॉट लक्ष्य की प्राप्ति हेतु
   रोडमैप सत्र में भाग लिया।
- 16 नवंबर 2016 को नई दिल्ली, एनआईटीआई श्रृंखला में द्वितीय आईईसी में भारत प्रौद्योगिकी और विल गेट्स परिवर्तन विषय पर व्याख्यान दिया।
- 28 नवंबर 2016 को चेन्नई स्थित एनआईओटी परिसर में आयोजित नगर राजभाषा कार्यान्वयन समिति की बैठक भाग लिया।
- 3 दिसंबर 2016 को चेन्नई स्थित एल & टी ऑडिटोरियम में एमसीसीसीआई द्वारा आयोजित "ग्रीन एनर्जी एंड रीन्यूएबल का सद्दपयोग"विषय सत्र की अध्यक्षता की।
- 6 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में आयोजित एनएबीएल-एमआरएम बैठक में भाग लिया।
- 8 दिसंबर 2016 को नई दिल्ली स्थित जीआईजेड में 'ग्रीन एनर्जी कॉरिडोर और एलवीआरटी पर जीआईजी लाइन ऑफ क्रेडिट' के अंतर्गत प्रस्तावों के लिए चर्चा में भाग लिया।
- 20 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान और इसके भविष्य के रोडमैप की गतिविधियों की समीक्षा हेतु नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव के साथ बैठक भाग लिया।

#### डॉ राजेश कत्याल, उप महानिदेशक और एकक प्रमुख, OW&IB

 15 अक्टूबर 2016 को अहमदाबाद स्थित 'गुजरात राज्य तटीय क्षेत्र प्रबंधन प्राधिकरण' में आयोजित 'गुजरात में खंभात की खाड़ी और तमिलनाडु राज्य' में LiDAR संस्थापना हेतु क्षेत्रों की पहचान के विषय पर 'तटीय विनियमन क्षेत्र (सीआरजेड)' की स्वीकृति प्राप्ति हेतु आयोजित बैठक में भाग लिया।

- 29 नवंबर 2016 को नई दिल्ली में नवीन और नवीकरणीय ऊर्जा मंत्रालय में यूरोपीय संघ द्वारा वित्त पोषित अपतटीय परियोजना की बैठक " FOWIND, FOWPI (COWI) और यूरोपीय संघ के परामर्शदाता के साथ भूभौतिकीय और भू-तकनीकी सर्वेक्षण और अध्ययन" विषय पर आयोजित बैठक में भाग लिया।
- 1 दिसंबर 2016 को गुजरात राज्य के गांधीनगर में गुजरात सरकार के ऊर्जा और पेट्रो-रसायन विभाग के अतिरिक्त मुख्य सचिव के साथ LiDAR आधारित अपतटीय पवन ऊर्जा मापन अभियान की प्रगति पर चर्चा हेतु आयोजित बैठक में भाग लिया।

### डॉ जी गिरिधर, उप महानिदेशक और एकक प्रमुख, SRRA

- 14 अक्टूबर 2016 को कोच्चि में PSDF, POSOCO के निर्देशानुसार विभिन्न SLDC सदस्यों के साथ सौर ऊर्जा पूर्वानुमान विषय पर आयोजित बैठक में भाग लिया।
- 11 नवंबर 2016 को सौर ऊर्जा विकिरण संसाधन निर्धारण एकक और जीआईजेड अधिकारियों और थिरुवल्लुर स्थित प्रत्यूषा अभियांत्रिकी महाविद्यालय अधिकारियों के मध्य अंशांकन गतिविधियों हेतु आयोजित बैठक में भाग लिया।
- 24 से 29 नवंबर 2016 की अवधि में सौर ऊर्जा विकिरण संसाधन निर्धारण एकक के अधिकारियों और नई दिल्ली के जीआईजेड -अधिकारियों ने गंगटोक-सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशन और गंगटोक के एसआरईडीए – अधिकारियों के साथ संयुक्त रूप से गंगटोक और सिक्किम का भ्रमण किया और पश्चिम बंगाल, दार्जलिंग में सौर ऊर्जा विषय पर आयोजित कार्यशाला में भाग लिया।

### ए मोहम्मद हुसैन, उप महानिदेशक और एकक प्रमुख, WTRS

 6 अक्टूबर 2016 को तिमलनाडु के कृष्णाकोइल, विरुधुनगर जिले के कलशिलंगम विश्वविद्यालय द्वारा आयोजित राष्ट्रीय संगोष्ठी में 'सतत ऊर्जा प्रणालियाँ-नवीकरणीय ऊर्जा संसाधन" विषय पर व्याख्यान दिया।

# **एस.ए. मैथ्यू,** निदेशक और एकक प्रमुख, WTT

 16 अक्टूबर 2016 को वेल्टेक डॉ आरआर और डॉ एसआर तकनीकी विश्वविद्यालय, चेन्नई में उनके अभिनव अनुसंधान प्रस्तावों के संदर्भ में प्रोफेसरों के लिए अवसर पर अनुसंधान एवं विकास (इलेक्ट्रिकल और इलेक्ट्रॉनिक्स अभियांत्रिकी) विषय पर आयोजित बैठक में भाग लिया।

# एस सेंथिल कुमार, निदेशक और एकक प्रमुख, S&C

- 20 अक्टूबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में कोरियाई
   देश के छः सदस्यी प्रतिनिधिमंडल के साथ "पवन ऊर्जा टरबाइन और
   ईएसएस व्यवहार्यता अध्ययन" विषय पर बैठक में भाग लिया।
- 24 नवंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में मैसर्स गैंटनर इंस्ट्रूमेंट्स एंड कंडीशन मॉनिटरिंग कम्पनी के अधिकारियों द्वारा 'गैंटनर इंस्ट्रूमेंट्स एंड कंडीशन मॉनिटरिंग' विषय पर प्रदान की गई प्रस्तुति में भाग लिया।
- 21 दिसंबर 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय के सचिव के साथ राष्ट्रीय पवन ऊर्जा संस्थान की गतिविधियों की समीक्षा हेतु आयोजित बैठक भाग लिया।



## **एम अनवर अली,** निदेशक और प्रमुख, ESD

- 18 से 22 अक्टूबर, 2016 की अविध में मुंबई में "हुसुर विंड इंडिया 2016" में इंटर सोलर इंडिया विषय पर आयोजित आईजीईपी प्रदर्शनी में संयुक्त रूप से पवेलियन संस्थापना एवं प्रबंधन कार्य किया।
- 18 और 19 नवंबर 2016 की अविध में कायथर स्थित पवन ऊर्जा टरबाइन स्टेशन में "आंतरिक लेखा-परीक्षा - एनएबीएल / आईईसी 17025: 2005" की बैठक में भाग लिया।
- 24 नवंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में "जीएमबीएच – पवन ऊर्जा टरबाइन स्थिति निगरानी प्रणाली (सीएमएस)" की बैठक में भाग लिया।

### जे.सी. डेविड सोलोमन, अपर निदेशक और प्रमुख - KSM & SWES

• 25 नवंबर 2016 को शिलांग में 'उत्तर-पूर्व से एसएनए अधिकारियों के लिए आयोजित'लघु पवन ऊर्जा प्रणाली' की बैठक में भाग लिया।

### के. भूपति, अपर निदेशक और प्रमुख, WRA

- 4 अक्टूबर 2016 को एनआईटीआई, नई दिल्ली में 'भारत के लिए जीआईएस आधारित ऊर्जा मानचित्र' विषय पर आयोजित बैठक में भाग लिया।
- 16 और 17 अक्टूबर 2016 की अवधि में केरल राज्य के इडुक्की जिले में अनुसंधान एवं विकास अध्ययन हेतु क्षेत्र भ्रमण किया गया।
- 20 अक्टूबर 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय में पवन ऊर्जा–सौर ऊर्जा उच्च वर्ण संकर निति निर्धारण हेतु आयोजित बैठक में भाग लिया।
- 22 नवंबर 2016 को नई दिल्ली में 'तटवर्ती और अपतटीय पवन ऊर्जा विद्युत क्षमता' विषय पर आयोजित छठे वार्षिक सम्मेलन में 'भारत में पवन ऊर्जा विद्युत' विषय पर व्याख्यान दिया।
- 25 नवंबर 2016 को मेघालय राज्य, शिलांग में, 50 मीटर ऊँचाई के पवन ऊर्जा टरबाइन निगरानी स्टेशनों के पूर्वोत्तर राज्य क्षेत्रों में कार्यान्वयन की स्थिति हेतु आयोजित समीक्षा बैठक में भाग लिया।

### डॉ पी कनगेल, अपर निदेशक और प्रमुख, ITCS

- 1 अक्टूबर 2016 को चेन्नई में मधानंगकुप्पम स्थित 'सोका इकेदा आर्ट्स एंड साइंस महिला महाविद्यालय' में "महिलाओं के लिए बीबलीओथेरेपी और वेबोपैरेपी" विषय पर आयोजित एक दिवसीय राष्ट्रीय सूचना साक्षरता सम्मेलन' का उद्घाटन किया एवं मुख्य भाषण दिया।
- 15 अक्टूबर 2016 को चेन्नई में पेरम्बूर स्थित 'कलगी रंगनाथन मोंटफोर्ड मैट्रिकुलेशन हायर सेकेंडरी विद्यालय' में आयोजित 'विलोसिटि-2016' विज्ञान प्रदर्शनी का मुख्य अतिथि के रूप में उद्घाटन किया।
- 17 से 20 अक्टूबर 2016 की अवधि में मैसूरू विश्वविद्यालय में आयोजित 'STEMFest 2016' के अवसर पर "सामाजिक आर्थिक समस्याओं के समाधान में हरित और नवीकरणीय ऊर्जा के प्रभाव" विषय पर दिनांक 19 अक्टूबर 2016 को आयोजित पैनल चर्चा में भाग लिया।
- 25 नवंबर 2016 को चेन्नई में वेपेरी स्थित 'बेंटिंक गर्ल्स हायर सेकेंड्री विद्यालय में विद्यालय-शिक्षकों के लिए "प्रदूषण के समाधान" विषय पर आयोजित एक दिवसीय कार्यशाला का उद्घाटन किया और व्याख्यान दिया।

- 28 नवंबर 2016 को चेन्नई में पेंगलाथूर स्थित 'जीकेएम अभियांत्रिकी और प्रौद्योगिकी महाविद्यालय में संकाय सदस्य विकास कार्यक्रम के अंतर्गत "ऊर्जा, पर्यावरण, नवीकरणीय और पवन ऊर्जा अवलोकन" विषय पर एक व्याख्यान दिया।
- 30 नवंबर 2016 को चेन्नई में पेरुंगुडी स्थित "इंडियन पब्लिक स्कूल"में "पवन ऊर्जा प्रौद्योगिकी: एक अवलोकन" विषय पर व्याख्यान दिया।
- 16 दिसम्बर 2016 को वैलोर स्थित 'किंग्स्टन इंजीनियरिंग महाविद्यालय' में "उभरती हुई प्रौद्योगिकियों में नवीकरणीय ऊर्जा संसाधनों का उपयोग" विषय पर आयोजित दो दिवसीय राष्ट्रीय कार्यशाला में "पवन ऊर्जा टरबाइन प्रौद्योगिकी एवं अनुप्रयोग" विषय पर व्याख्यान दिया।

### ए हरि भास्करन, उप निदेशक, KSM & SWES

- 5 अक्टूबर 2016 को अहमदाबाद में श्री वेदमिथनी द्वारा निर्मित 'धुरी ऊर्ध्वाधर पवन ऊर्जा टरबाइन' का निरीक्षण किया गया।
- 18 से 20 अक्तूबर 2016 की अवधि शिलांग में आयोजित की जाने वाली 'लघु पवन ऊर्जा टरबाइन उच्च वर्ण संकर प्रणाली' विषय पर आयोजित की जाने वाली कार्यशाला के संबंध में एमएनआरईडीए के निदेशक के साथ शिलांग में चर्चा की गई।
- 25 नवंबर 2016 को मेघालय राज्य, शिलांग में, 50 मीटर ऊँचाई के पवन ऊर्जा टरबाइन निगरानी स्टेशनों के पूर्वोत्तर राज्य क्षेत्रों में कार्यान्वयन की स्थिति हेतु आयोजित समीक्षा बैठक में भाग लिया।

### **दीपा कुरूप,** उप निदेशक, KSM & SWES

• 25 नवंबर 2016 को शिलांग में 'उत्तर-पूर्व से एसएनए अधिकारियों के लिए आयोजित 'लघु पवन ऊर्जा प्रणाली' की बैठक में भाग लिया।

# **ए.जी. रंगराज,** सहायक निदेशक (तकनीकी), WRA

- 10 से 12 नवंबर 2016 की अवधि में तमिलनाडु राज्य के नागरकोइल में विभिन्न मीटर संबंधी विषयों पर IWPA, CE / NCES और क्षेत्रीय अधिकारियों के साथ 'पवन ऊर्जा पूर्वानुमान सेवाओं' विषय पर आयोजित बैठक में भाग लिया।
- 16 नवंबर 2016 को हैदराबाद में आयोजित पवन ऊर्जा क्षेत्र विषय पर अर्द्ध दिवसीय गोल मेज बैठक में 'वर्ष 2022 तक 60,000 मेगावॉट पवन ऊर्जा का लक्ष्य प्राप्त करने संबंधी मुख्य समस्याओं पर मंथन' करने हेतु विचार-विमर्श किया गया।

# जे बास्टीन, सहायक निदेशक (तकनीकी), WRA

 4 अगस्त 2016 को हैदराबाद में आयोजित 'प्रथम ईएसआरआई भारत क्षेत्रीय उपभोगकर्त्ता सम्मेलन -2016 (आरयूसी) और प्रदर्शनी' में भाग लिया।

## जी अरविक्कोडी, सहायक अभियंता, WRA

 3 से 7 अक्तूबर 2016 की अविध में नोएडा में NCMRWF द्वारा 'मॉडलिंग और पूर्वानुमान तकनीक' विषयों पर आयोजित प्रशिक्षण में भाग लिया।

### **बी कृष्णन,** सहायक अभियंता, WRA

 16 और 17 अक्टूबर 2016 की अवधि में केरल राज्य के इडुक्की जिले में अनुसंधान एवं विकास अध्ययन हेतु क्षेत्र भ्रमण किया गया।

### 'पवन<mark>' - 51वां अंक अक्तूबर - दिसम्बर 2016</mark>

### प्रसून कुमार दास, सहायक निदेशक (तकनीकी) अनुबंध

• 21 नवंबर 2016 को अहमदाबाद स्थित GERMI में एनटीपीसी अधिकारियों के लिए "सौर ऊर्जा विकिरण संसाधन" विषय पर व्याख्यान दिया।

### आर कार्तिक, सहायक निदेशक (तकनीकी) अनुबंध

 16 नवंबर 2016 को तिरुवल्लुर स्थित प्रत्युशा अभियांत्रिकी महाविद्यालय के विद्यार्थियों और संकाय सदस्यों के समक्ष "सौर ऊर्जा विकिरण संसाधन" विषय पर व्याख्यान दिया।

### **आर शशिकुमार,** परामर्शदाता

 7 अक्टूबर 2016 को नवीन और नवीकरणीय ऊर्जा मंत्रालय में नए भर्ति वैज्ञानिकों के लिए आयोजित प्रशिक्षण कार्यक्रम में "सौर ऊर्जा विकिरण संसाधन" विषय पर व्याख्यान दिया।

### अंतर्राष्ट्रीय ऊर्जा सम्मेलन 2016

डॉ एस एस गोमोतिनायगम, जे.सी. डेविड सोलोमन, एम अनवर अली और ए हिर भास्करन ने 5 और 10 अक्टूबर 2016 की अवधि में गुजरात राज्य के वडोदरा में नवीन और नवीकरणीय ऊर्जा मंत्रालय एवं गुजरात सरकार द्वारा आयोजित "अंतर्राष्ट्रीय ऊर्जा सम्मेलन" (स्विच ग्लोबल एक्सपो) में भाग लिया।

### आंतरिक लेखा परीक्षा

एम सरवनन और एस परमाशिवन ने 'आंतरिक लेखा परीक्षा आईएसओ / आईईसी 17025: 2005' में 18 नवंबर 2016 को पवन ऊर्जा टरबाइन स्टेशन, कायथर में और 21 नवंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में भाग लिया।

### ग्यारहवीं प्रबंधन समीक्षा बैठक

एस ए मैथ्यू, एम श्रवणन, भुक्या रामदास और एस परमाशिवन ने 'आईएसओ / आईईसी 17025: 2005' के लिए ग्यारहवीं प्रबंधन समीक्षा बैठक में 7 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में भाग लिया।

### स्ट्रक्चरल इंजीनियरिंग कन्वेंशन -2016 (21 - 23 दिसंबर 2016)

चेन्नई स्थित सीएसआईआर-स्ट्रक्चरल इंजीनियरिंग रिसर्च केंद्र में 'इंडियन एसोसिएशन फॉर स्ट्रक्चरल इंजीनियरिंग (आईएएसई)' के तत्वाधान में सीएसआईआर-स्ट्रक्चरल इंजीनियरिंग रिसर्च केंद्र, भारतीय प्रौद्योगिकी संस्थान और अन्ना विश्वविद्यालय-चेन्नई द्वारा द्वारा संयुक्त रूप से आयोजित "स्ट्रक्चरल इंजीनियरिंग कन्वेंशन -2016" में डॉ एस गोमोतिनायगम, डॉ राजेश कटियाल, डॉ जी गिरिधर, एस ए मैथ्यू, ए सेंथिलकुमार, एन राजकुमार, मोहम्मद हुसैन और जे.सी. डेविड सोलोमोन ने भाग लिया। डॉ एस गोमातिनायगम ने एक मुख्य व्याख्यान दिया और उपर्युक्त के अतिरिक्त उनके द्वारा 23 दिसंबर 2016 को "प्राकृतिक खतरों के विरुद्ध संरचनाओं से निवारण" तकनीकी सत्र की अध्यक्षता भी की गई।

# विदेश यात्रा

- 23 से 28 अक्टूबर 2016 की अविध में श्री के भूपित अपर निदेशक एवं एकक प्रमुख और श्री बी कृष्णन सहायक अभियंता ने चीन देश की बीजिंग स्थित 'मैसर्स मिंगयाँगिसम चीन पॉवर कम्पनी' में "वींडिसिम यूसर्स मीट - 2016" सम्मेलन में भाग लिया और अध्ययन भ्रमण किया।
- डॉ पी कनगवेल ने 31 अक्टूबर से 2 नवंबर 2016 की अवधि में जापान देश के टोक्यो स्थित टोक्यो विश्वविद्यालय में आयोजित "15 वीं विश्व पवन ऊर्जा सम्मेलन और प्रदर्शनी (WWEC 2016) में भाग लिया और "भारत में पवन ऊर्जा विकास एक अवलोकन" विषय पर व्याख्यान प्रस्तुत किया।
- डॉ जी गिरिधर ने जर्मनी देश के बर्लिन में 31 अक्टूबर से 4 नवंबर 2016 की अविध में मैसर्स जीआईजेड, नई दिल्ली द्वारा आयोजित "नवीकरणीय ऊर्जा और क्षमता सप्ताह 2016 –िवशेषज्ञ कार्यशाला और ऊर्जा परिवर्तन दिवस" विषय पर आयोजित सम्मेलन में भाग लिया

### प्रकाशन

डॉ एस गोमितनायगम, साक्षात्कार - नवीकरणीय ऊर्जा पर्यवेक्षण वर्षगांठ अंक, नवंबर 2016।





७ से ११ नवम्बर २०१६ की अवधि में "पवन ऊर्जा टरबाइन प्रौद्योगिकी " विषय पर २०वाँ राष्ट्रीय प्रशिक्षण पाठ्यक्रम राष्ट्रीय पवन ऊर्जा संस्थान के निम्नलिखित कार्मिको ने न्याख्यान दिया।

| क्र.सं. | व्याख्यान –विषय                                                                                                                                                                                                                            | वक्ता                   |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| 01      | पवन ऊर्जा प्रौद्योगिकी की स्थिति और परिचय                                                                                                                                                                                                  | डॉ एस गोमतीनायगम        |  |
| 01      | पवन ऊर्जा टरबाइन टॉवर संकल्पना                                                                                                                                                                                                             | अ १९८ गामतागायगम        |  |
| 02      | पवन ऊर्जा टरबाइन के प्रकार का प्रमाणन                                                                                                                                                                                                      | श्री ए सेंथिल कुमार     |  |
|         | पवन ऊर्जा टरबाइन परीक्षण हेतु उपकरणीकरण                                                                                                                                                                                                    |                         |  |
| 03      | पवन ऊर्जा संसाधन निर्धारण और तकनीक                                                                                                                                                                                                         | श्री के भूपति           |  |
|         | पवन ऊर्जा और विद्युत उत्पादन का पूर्वानुमान                                                                                                                                                                                                |                         |  |
| 04      | पवन ऊर्जा टरबाइन क्षेत्र के डिजाइन और लेऑउट                                                                                                                                                                                                | श्री जे बॉस्टीन         |  |
| 05      | पवन ऊर्जा टरबाइन अवयव                                                                                                                                                                                                                      | श्री जे सी डेविड सोलोमन |  |
| 06      | 06       पवन ऊर्जा टरबाइन गियर-बॉक्स       श्री एन राज कुमार         07       पवन ऊर्जा टरबाइन जेनरेटर और उनके प्रकार       श्री एम अनवर अली         08       पवन ऊर्जा टरबाइन प्रणाली की सुरक्षा-नियंत्रण पद्धित       श्री एस अरुळसेल्वन |                         |  |
| 07      |                                                                                                                                                                                                                                            |                         |  |
| 08      |                                                                                                                                                                                                                                            |                         |  |
| 09      | पवन ऊर्जा टरबाइन फाउंडेशन अवधारणाएं                                                                                                                                                                                                        | <br>-   डॉ राजेश कत्याल |  |
| 03      | लघु पवन ऊर्जा टरबाइन और उच्च वर्ण संकर प्रणाली                                                                                                                                                                                             | કા રાગરા મહ્યાલ         |  |
| 10      | 10 पवन ऊर्जा के विकास में राष्ट्रीय पवन ऊर्जा संस्थान की भूमिका डाँ पी कनगवेल                                                                                                                                                              |                         |  |
| 11      | 11 पवन ऊर्जा टरबाइन ग्रिड एकीकरण श्रीमती दीपा कुरुप                                                                                                                                                                                        |                         |  |
| 12      | 12 पवन ऊर्जा टरबाइन परीक्षण और मापन तकनीक श्री एस ए मैथ्यू                                                                                                                                                                                 |                         |  |
| 13      | 13 अपतटीय पवन ऊर्जा - एक सिंहावलोकन श्री एम जॉएल फ्रेंकलिन अस                                                                                                                                                                              |                         |  |

7 से 18 नवम्बर 2016 की अविध में 'पवन ऊर्जा संसाधन निर्धारण और पवन ऊर्जा टरबाइन क्षेत्र योजना' विषय पर विशेष प्रशिक्षण पाठ्यक्रम राष्ट्रीय पवन ऊर्जा संस्थान के निम्नलिखित कार्मिको ने व्याख्यान दिया।

| क्र.सं. | व्याख्यान –विषय                                                            | वक्ता                             |
|---------|----------------------------------------------------------------------------|-----------------------------------|
|         | पवन ऊर्जा संसाधन निर्धारण – दिशा निर्देश                                   |                                   |
| 01      | पवन ऊर्जा संसाधन निर्धारण और तकनीक                                         | श्री के भूपति                     |
|         | पवन ऊर्जा मापन –सुदूर सेंसिंग उपकरणीकरण                                    |                                   |
| 02      | पवन ऊर्जा टरबाइन निगरानी स्टेशन क्षेत्र चयन                                | श्री बी कृषणन                     |
| 03      | पवन ऊर्जा प्रौद्योगिकी – एक परिचय और पवन ऊर्जा टरबाइन कार्यक्रम            | डॉ एस गोमतीनायगम                  |
| 04      | पवन ऊर्जा टरबाइन निगरानी स्टेशन की संस्थापना                               | श्री सुरेश और श्री विनोद कुमार    |
| 05      | पवन ऊर्जा मापन और पवन ऊर्जा पैरामीटरस                                      | श्री बी कृषणन                     |
| 06      | भारतीय पवन ऊर्जा एटलस -  एक सिंहावलोकन                                     | श्री जे बॉस्टीन                   |
| 07      | पवन ऊर्जा विश्लेषण - आँकड़ों का संग्रहण, सत्यापन, प्रसंस्करण और रिपोर्टिंग | श्रीमती जी अरिवुक्कोडी            |
| 08      | पवन ऊर्जा और विद्युत उत्पादन का पूर्वानुमान                                | श्री के भूपति और श्री ए जी रंगराज |
| 09      | पवन ऊर्जा आँकड़ों के विश्लेषण हेतु सॉफटवेयर टूल्स                          | श्री बी कृषणन                     |

7 से 8 अक्तूबर 2016 की अवधि में " नवीन और नवीकरणीय ऊर्जा मंत्रालय द्वारा नवीन भर्ति किए गए वैज्ञानिक 'बी' के लिए विशेष प्रशिक्षण पाठ्यक्रम" राष्ट्रीय पवन ऊर्जा संस्थान के निम्नलिखित कार्मिको ने न्याख्यान दिया।

| क्र.सं. | व्याख्यान –विषय                                                       | वक्ता                          |
|---------|-----------------------------------------------------------------------|--------------------------------|
| 01      | भारत में पवन ऊर्जा के विकास में राष्ट्रीय पवन ऊर्जा संस्थान की भूमिका | श्री एम जॉएल फ्रेंकलिन असारिया |
| 02      | पवन ऊर्जा प्रौद्योगिकी की स्थिति – एक परिचय                           | डॉ एस गोमतीनायगम               |
| 03      | पवन ऊर्जा संसाधन निर्धारण और तकनीक                                    | श्री के भूपति                  |
| 04      | पवन ऊर्जा टरबाइन परीक्षण और मापन तकनीक                                | श्री एस ए मैथ्यू               |
| 05      | पवन ऊर्जा टरबाइन के प्रकार का प्रमाणन और मानक                         | श्री ए सेंथिल कुमार            |
| 06      | सौर ऊर्जा विकिरण संसाधन निर्धारण                                      | डॉ जी गिरिधर                   |



### राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई के वैज्ञानिकों और कार्मिकों द्वारा प्रशिक्षण / सम्मेलन / सेमिनार में प्रतिभागिता

#### डॉ एस गोमतिनायगम, महानिदेशक

 22 दिसम्बर 2016 को नई दिल्ली स्थित विज्ञान भवन में 'नवीकरणीय ऊर्जा क्षेत्र के लिए परीक्षण मानकीकरण और प्रमाणन' विषय पर आयोजित राष्ट्रीय कार्यशाला में भाग लिया।

### के भूपति, अपर निदेशक एवं एकक प्रमुख, WRA

- 3 से 6 अक्टूबर 2016 की अवधि में नोएडा में NCMRWF द्वारा 'मॉडलिंग और पूर्वानुमान तकनीक' विषय पर आयोजित प्रशिक्षण में भाग लिया।
- 9 दिसम्बर 2016 को नई दिल्ली में टेरी विश्वविद्यालय द्वारा "नवीकरणीय ऊर्जा परियोजनाओं का वित्तपोषण" विषय पर आयोजित प्रबंधन विकास कार्यक्रम में भाग लिया।

### ए जी रंगराज, सहायक निदेशक (तकनीकी), WRA

 3 से 7 अक्टूबर 2016 की अविध में नोएडा में NCMRWF द्वारा 'मॉडिलेंग और पूर्वानुमान तकनीक' विषय पर आयोजित प्रशिक्षण में भाग लिया।

#### जे बॉस्टीन, सहायक निदेशक (तकनीकी), WRA

 22 से 23 सितम्बर 2016 की अविध में चेन्नई में 'तिमलनाडु नवीकरणीय ऊर्जा एकीकरण अंतर्राष्ट्रीय सम्मेलन में भाग लिया।

#### एस ए मैथ्यू, अपर निदेशक एवं एकक प्रमुख, WTT

- 9 दिसम्बर 2016 को नई दिल्ली में टेरी विश्वविद्यालय द्वारा "नवीकरणीय ऊर्जा परियोजनाओं का वित्तपोषण" विषय पर आयोजित प्रबंधन विकास कार्यक्रम में भाग लिया।
- 16 दिसंबर 2016 को नई दिल्ली में हयात रीजेंसी होटल में भारत-जर्मन ऊर्जा मंच द्वारा "नवीकरणीय ऊर्जा उतार-चढ़ाव हेतु थर्मल पावर संयंत्रों का अनुरूपण" विषय पर राष्ट्रीय प्रशिक्षण संगोष्ठी में भाग लिया।

#### पवन ऊर्जा टरबाइन परीक्षण

- एस ए मैथ्यु, एम श्रवणन और भुक्या रामदास ने 7 और 8 नवंबर 2016 की अवधि में बैंगलुरू में "पवन ऊर्जा टरबाइन क्षेत्र निष्पादन हेतु दिशा-निर्देश" विषय पर मैसर्स DNVGL द्वारा आयोजित प्रशिक्षण में भाग लिया।
- 15 नवम्बर 2016 को एकक के कार्मिकों ने कायथर स्थित पवन ऊर्जा टरबाइन परीक्षण स्टेशन में "प्राथमिक चिकित्सा" विषय पर सैद्धांतिक और व्यावहारिक दोनों विषयों 'मैसर्स Safecorp सुरक्षा सेवाएँ LLP' द्वारा आयोजित प्रशिक्षण में भाग लिया।
- 16 से 17 नवम्बर 2016 की अविध में एकक के कार्मिकों ने कायथर स्थित पवन ऊर्जाटरबाइन परीक्षण स्टेशन में " सैद्धांतिक और व्यावहारिक दोनों की पराकाष्ठा " विषय पर 'मैसर्स Safecorp सुरक्षा सेवाएँ LLP' द्वारा आयोजित प्रशिक्षण में भाग लिया।
- एस परमिशवम ने राष्ट्रीय पवन ऊर्जा संस्थान में 8 दिसंबर 2016 को नॉर्वे की मैसर्स Windsim द्वारा "Windsim -8 सॉफ्टवेयर की नई सुविधाओं" विषय पर उनके सीटीओ और संस्थापक,श्री आर्नी आर ग्रावदिह, पीएचडी, द्वारा प्रदान किए गए सॉफ्टवेयर प्रशिक्षण में भाग लिया।

### ए सेंथिल कुमार, निदेशक एवं एकक प्रमुख, S&C

 15 और 16 दिसंबर 2016 की अविध में नोएडा स्थित राष्ट्रीय मानकीकरण प्रशिक्षण संस्थान में भारत मानक संस्थान द्वारा तकनीकी समिति के सदस्यों के लिए आयोजित 2 दिवसीय प्रशिक्षण कार्यक्रम में भाग लिया।

#### एन राजकुमार, उप निदेशक (तकनीकी), S&C

 16 नवंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में बैंगलुरु स्थित मैसर्स एबीबी इंडिया लिमिटेड कम्पनी के श्री अभिलाष ई टी नायर द्वारा 'एबीबी PowerStoreTM और इसकी क्षमताएं' विषय पर आयोजित संगोष्ठी में भाग

8 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में नॉर्वे की मैसर्स Windsim द्वारा "Windsim -8 सॉफ्टवेयर की नई सुविधाओं" विषय पर उनके सीटीओ और संस्थापक,श्री आर्नी आर ग्रावदिह, पीएचडी, द्वारा प्रदान किए गए सॉफ्टवेयर प्रशिक्षण में भाग लिया।

#### एस अरुलसेल्वन, सहायक अभियंता S&C

 24 नवंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में मैसर्स GANTNER उपकरण GmbH & GANTNER भारत कम्पनी द्वारा "GANTNER उपकरण और स्थिति की निगरानी" विषय पर आयोजित संगोष्ठी में भाग लिया।

### ज्ञान हस्तांतरण प्रबंधन और लघु पवन ऊर्जा उच्च वर्ण संकर प्रणाली

- 23 और 24 नवंबर 2016 की अविध में एकक के कार्मिकों ने बैंगलुरू स्थित PRDC द्वारा 'एमआई, विद्युत प्रणाली विश्लेषण सॉफ्टवेयर' विषय पर बैंगलोर में आयोजित 2 दिवसीय प्रशिक्षण और संपूर्ण औद्योगिक प्रशिक्षण प्राप्त किया।
- एकक अभियंताओं ने सीआईआई द्वारा आयोजित सम्मेलन में भाग लिया और मंच पर आयोजित विचार-विमर्श से सभी अवगत हुए और इसका लाभ उठाया।

### ए हरि भास्करन, उप निदेशक, KSM और SWES

5 से 9 दिसंबर 2016 की अवधि में गुजरात की आईआईटी गांधीनगर में "ईंधन सेल प्रौद्योगिकी प्रशिक्षण" विषय पर आयोजित वैश्विक शैक्षिक नेटवर्क पहल (जियान)" सम्मेलन में भाग लिया।

#### आर नवीन मुत्, कनिष्ठ इंजीनियर, KSM और SWES

10 नवंबर 2016 को चेन्नई में TEDA और CII, द्वारा 'तमिलनाडु नवीकरणीय ऊर्जा " विषय पर आयोजित एक दिवसीय सम्मेलन में भाग लिया।

#### प्रसून कुमार दास, सहायक निदेशक (तकनीकी) अनुबंध

24 अक्टूबर 2016 को आईआईटीएम, पुणे द्वारा "ऊर्जा पूर्वानुमान हेतु भविष्य की रणनीति" विषय पर आयोजित बैठक में भाग लिया।

### एडवांस एक्सेल और पावर प्वाइंट सॉफ्टवेयर प्रशिक्षण

13 से 15 अक्टूबर 2016 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में सभी कार्मिकों ने मैसर्स एक्सेल प्रोडिगी ट्रेनिंग और कंसल्टेंसी प्राइवेट लिमिटेड द्वारा आयोजित 'अग्रिम एक्सेल और पावर प्वाइंट सॉफ्टवेयर प्रशिक्षण' प्राप्त किया।

### डिजिटल भुगतान कार्यशाला

दिनांक 28 नवंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में सभी कार्मिकों ने राष्ट्रीय पवन ऊर्जा संस्थान के श्रव्य-दृश्य सम्मेलन कक्ष में आयोजित डिजिटल भुगतान कार्यशाला में भाग लिया।

#### ऑन लाइन सौर ऊर्जा प्रशिक्षण

13 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में "मैसर्स आई –आचार्य द्वारा विशिष्ट संस्थानों के लिए सौर ऊर्जा -पवन ऊर्जा के उपयोग" विषय पर पीपीपी मोड और कार्यशाला के अंतर्गत आयोजित ऑन लाइन सौर ऊर्जा प्रशिक्षण विमोचन कार्यक्रम में सभी कार्मिकों ने भाग लिया।

#### ऑनलाइन प्रशिक्षण कार्यक्रम

13 दिसंबर 2016 को राष्ट्रीय पवन ऊर्जा संस्थान में 'सौर ऊर्जा फोटोवोल्टिक डिजाइन और संस्थापना' और 'विशिष्ट संस्थानों के लिए सौर ऊर्जा -पवन ऊर्जा के उपयोग' विषय पर आयोजित ऑनलाइन प्रशिक्षण विमोचन कार्यक्रम में सभी कार्मिकों ने भाग लिया।



# पवन ऊर्जा टरबाइन क्षेत्रों में विद्युत गुणवत्ता की विशेषताएं

**डॉ पी सोमसुंदरम,** सहायक प्रोफेसर, EEE विभाग, पावर सिस्टम इंजीनियरिंग, अन्ना विश्वविद्यालय, mpsomasundaram@annauniv.edu

#### परिचय

विद्युत का उपभोग पूर्ण विश्व में दैनंदिन बढ़ता ही जा रहा है। अधिकांश देशों ने पृथ्वी की ऊष्णता को रोकने के लिए, कार्बन डाइऑक्साइड या हवा, पानी या मृदा प्रदूषण, जो पारंपरिक जीवाश्म ईंधन के दहन के कारण हो रहे हैं उनमें उत्सर्जन कम करने और उनके उपयोग पर लक्ष्य निर्धारित किए हैं। व्यापक रूप से यह स्वीकार्य है कि ऊर्जा बचत योजना, प्रोत्साहन योजना अथवा नवीकरणीय ऊर्जा के अधिक मात्रा में अनुप्रयोग करने जैसी योजनाओं से ही इन लक्ष्यों को प्राप्त किया जा सकता है।

पवन ऊर्जा उत्पादन, उचित पवन की गित के साथ, संभावित अर्थव्यवस्था की दृष्टि से एक आशाजनक और विश्वसनीय विकल्प माना जाता है। पवन ऊर्जा–विद्युत उत्पादन की अपनी विशेषताएं हैं जो कि वर्तमान विद्युत उत्पादन की अपनी विशेषताएं हैं जो कि वर्तमान विद्युत उत्पादन इकाई से भिन्न हैं, जैसे पवन गित की अस्थिर प्रकृति और उसकी अपेक्षाकृत नए प्रकार के जनरेटर; पवन ऊर्जा जनरेटर को विद्युत व्यवस्था से जोड़ने में कई समस्याएं उत्पन्न हो सकती हैं जैसे: वोल्टेज में उतार चढ़ाव, फ्लिकर्स, हार्मोनिक्स, अस्थिरता, चलायमानता, अनचाही विद्युत विनियमन समस्याएं आदि। ये चुनौतियाँ पवन ऊर्जा के नेटवर्क, एकीकरण में मुख्य रूप से एक स्वीकार्य वोल्टेज स्तर और विद्युत प्रणाली में संतुलन बनाए रखने के लिए होती हैं। विद्युत गुणवत्ता के विषय पवन ऊर्जा उत्पादन से ही नहीं अपितु तकनीकी पहलुओं के साथ भी जुड़े हुए होते हैं और ये मुक्त विद्युत बाजार के लिए भी महत्वपूर्ण होते हैं।

अंतर्राष्ट्रीय विद्युत तकनीकी आयोग (आईईसी) ने वर्तमान पवन ऊर्जा टरबाइन के लिए वर्तमान विद्युत गुणवत्ता, आईईसी 61400-21,मानक मापदंड ज़ारी किए हैं जिसमें पवन ऊर्जा टरबाइन के व्यवहार के लक्षण हेतु विद्युत गुणवत्ता के मापदंड परिभाषित किए हैं और ग्रिड वॉट्स के मापन और विद्युत गुणवत्ता की विशेषताओं का ऑकलन करने के लिए भी सिफारिशें प्रदान की हैं। मानकों में मुख्य रूप से एकल पवन ऊर्जा टरबाइन मापन पद्धतियों का वर्णन किया गया है, इनमें एकल पवन ऊर्जा टरबाइन के प्रकार और मॉडल विकसित करने हेतु सक्षम पूर्व निर्धारित शर्तें और पवन ऊर्जा टरबाइन क्षेत्रों के लिए विशिष्ट गुणवत्ता युक्त विशेषताओं को दर्शाया गया है।

## विद्युत गुणवत्ता

परिचय: 'विद्युत गुणवत्ता' का क्या अर्थ है? एक आदर्श विद्युत वह होती है जो कि आपूर्ति हेतु सदैव उपलब्ध रहती है, वह सदैव वोल्टेज और आवृत्ति की सिहण्णुता के अंतर्गत, और शुद्ध शोर से मुक्त सामान्य (सिनुसॉडल) आकार की लहरें होती हैं। उपयोगकर्ता के अनुप्रयोग के अनुसार उपकरणों के प्रकार की संस्थापना और उनकी आवश्यकताओं के अनुसार ही यह निर्भर करता है।

टेबल-। में विद्युत गुणवत्ता के दोष वर्णित हैं जो कि उनकी प्रविणता से भिन्न हैं, इन्हें पांच श्रेणियों में उनके मुख्य संभावित कारणों के साथ दर्शाया गया है।

टेबल-I – विद्युत गुणवत्ता दोष और उनके मुख्य संभावित कारण।

| प्रकार | विद्युत गुणवत्ता दोष                                     | मुख्य संभावित कारण                                                                                                                  |
|--------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1      | संस्थापना-अवगुण<br>(हार्मोनिक्स डिस्टोर्शन)              | ग्राहक के द्वारा स्वंय संस्थापना करने के<br>कारण उत्पन्न और / या नेटवर्क पर<br>इसका प्रभाव नहीं होने के कारण।                       |
| 2      | अंधकारमय होना<br>(ब्लैक ऑउट)                             | आपूर्तिकर्त्ता के कारण या क्षेत्र के<br>उपकरणों, कंडक्टर और जोड़ने के<br>कारण हुई असफलता के कारण।                                   |
| 3      | सीमा से कम या<br>अधिक वोल्टेज़<br>(अंडर या ओवर वोल्टेज़) | आपूर्ति वोल्टेज में उतार-चढ़ाव के<br>कारण, अधिक अस्थिर भार का<br>उपयोग (झिलमिलाहट) करने के<br>कारण।                                 |
| 4      | डिप्स या शिथिल होना<br>(डिप्स या सेज़स)                  | आपूर्तिकर्ता या हार्मोनिक विद्युत<br>में शिथिलता के कारण।                                                                           |
| 5      | अस्थाई होना<br>(ट्रांसिएंटस)                             | नेटवर्क में परिवर्तन या विद्युत प्रभाव<br>और उपभोक्ता के क्षेत्र या एक ही<br>सर्किट में प्रतिक्रियाशील भार में<br>परिवर्तन के कारण। |

टेबल-1 से हमें यह ज्ञात होता है कि विद्युत गुणवत्ता का वास्तविक संबंध उपकरण और आपूर्ति के बीच अनुकूलता से होता है। परिणामस्वरूप अच्छी गुणवत्ता युक्त विद्युत सुनिश्चित करना, अच्छा अभिकल्प, प्रभावी सुधार-उपकरण, आपूर्तिकर्ता के साथ सहयोग, निरंतर निगरानी और अच्छे रखरखाव की आवश्यकता होता है। अर्थात, विद्युत गुणवत्ता में सुधार एक समग्र दृष्टिकोण और सिद्धांतों के अभ्यास में सक्षमता की आवश्यकता होता है। विशेष रूप से, पवन ऊर्जा टरबाइन जनरेटर की व्यवस्था हेतु कुछ अंतरराष्ट्रीय मानक सुझाए गए हैं जो कि पवन ऊर्जा टरबाइन से जुड़े एक ग्रिड की विद्युत गुणवत्ता हेतु उपयुक्त हैं। विद्युत प्रणाली व्यवस्था की श्रेणियाँ, विशेषताएं और उनकी विद्युत चुम्बकीय घटना के लक्षण निमन्वत तालिका-॥ दर्शाए गए हैं।

टेबल-II – विद्युत प्रणाली व्यवस्था की श्रेणियाँ, विशेषताएं और उनकी विद्युत चुम्बकीय घटना के लक्षण।

| श्रेणियाँ                                           | णियाँ विशिष्ट विशेषताएं                                                                                                                                     |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| अधिक वोल्टेज़ - अस्थाई (ओवर वोल्टेज़ - ट्रांसिएंटस) |                                                                                                                                                             |  |
| इम्पल्सिव                                           | नेनोसेकिंड : 5 ns riste time for < 50 ns<br>माइक्रोसेकिंड: 1us riste time for 50ns-1 ms<br>मिलिसेकिंड : 0.1 ms rise time for > 1 ms                         |  |
| ऑस्किलेटरी                                          | निम्न फ्रिक्वेंसीज़ : <5kHz for 0.3-50ms at 0-4 pu<br>मध्यम फ्रिक्वेंसीज़ : 5-500kHz for 20µs at 0-8 pu<br>उच्च फ्रिक्वेंसीज़ : 0.5-5MHz for 5 µs at 0-4 pu |  |



### 'पवन' - 51वां अंक अक्तूबर - दिसम्बर 2016

| श्रेणियाँ               | विशिष्ट विशेषताएं                        |  |
|-------------------------|------------------------------------------|--|
| कम अवधि हेतु            | <b>म्म अवधि हेतु वोल्टेज़ परिवर्तन</b>   |  |
| रुकावट                  | क्षणिक: 0.0. pu for 0.5 cycles -3 s      |  |
|                         | अस्थाई: 0.1 pu for 3s > 1 min            |  |
| शिथिल                   | तात्कालिक : 0.1-0.9 pu for 0.5-30 cycles |  |
|                         | क्षणिक : 0.1-0.9 pu for 30 cycles - 3 s  |  |
|                         | अस्थाई : 0.1-0.9 pu for 3 s - 1 min      |  |
| उभार                    | तात्कालिक : 1.1-1.8 pu for 0.5-30 cycles |  |
|                         | क्षणिक : 1.1-1.4 pu for 30 cycles - 3 s  |  |
|                         | अस्थाई : 1.1-1.2 pu for 3 s - 1 min      |  |
| दीर्घावधि हेतु          | वोल्टेज़ परिवर्तन                        |  |
| रुकावट                  | अनवरत: 0.0. pu for > 1 min               |  |
| कम वोल्टेज़             | 0.8 - 0.9 pu for > 1 min                 |  |
|                         | 1.1 - 1.2 pu for > 1 min                 |  |
| अधिक वोल्टेज़           |                                          |  |
| वोल्टेज़ तरंग वि        | वेकृतियाँ                                |  |
| डी सी वोल्टेज़          | 0-0.1%                                   |  |
| हार्मोनिक्स             | 0-100th H with 0-20% magnitude           |  |
| इंटर-हार्मो             | 0-6 kHz with 0-2% magnitude              |  |
| निक्स नोचिंग            |                                          |  |
| वोल्टेज में उतार-चढ़ाव: |                                          |  |
| इंटरमिटेंट              | <25 Hz with 0.1-7% magnitude             |  |

कुछ समय पूर्व, कई ट्रांसिमशन प्रणाली प्रचालकों ने पवन ऊर्जा टरबाइन और /या पवन ऊर्जा टरबाइन क्षेत्रों के लिए ग्रिड कोड का विकास किया है। ये प्रायः पवन ऊर्जा टरबाइनों की आवश्यकताओं जैसे लगते हैं जो अन्य विद्युत स्टेशनों के समान ही लगते हैं। नई आवश्यकताएं पवन ऊर्जा टरबाइन उद्योग के लिए चुनौतियाँ थीं परंतु ट्रांसिमशन प्रणाली प्रचालकों ने इसे अपनी प्रतिक्रिया और अनुरोध के रूप में व्यक्त किया था। उनके लिए बड़ी समस्या यह तथ्य था कि ग्रिड कोड राष्ट्रीय और क्षेत्रीय ग्रिड विशेषताओं की प्रतिक्रिया के लिए थे जो कि गैर-सामान्य और स्थानीय आवश्यकताओं पर निर्भर करते थे अतः मानकों को सामान्यीकृत करने के दृष्टिकोण को रोकने के लिए इसे ज़ारी किया गया प्रतीत हो रहा है। पवन ऊर्जा टरबाइनों के लिए अंतर्राष्ट्रीय विद्युत तकनीकी आयोग (आईईसी) के द्वारा अभी कुछ विद्युत गुणवत्ता मानक ज़ारी किए गए हैं जो कि टेबल-III में दर्शाए गए हैं।

# टेबल-III – आईईसी मानक

मानक।आईईसी 61400 - 1 अभिकल्प आवश्यकताएं आईईसी 61400 - 2 लघु पवन ऊर्जा टरबाइन आईईसी 61400 - 3 अपतटीय पवन ऊर्जा टरबाइन के लिए अभिकल्प आवश्यकताएं

आईईसी 61400-4 पवन ऊर्जा टरबाइन के लिए गियर्स

आईईसी 61400 - (5) पवन ऊर्जा टरबाइन रोटर ब्लेड
आईईसी 61400 - 11, ध्वनिक शोर मापन तकनीक
आईईसी 61400 - 12-1 विद्युत प्रदर्शन मापन
आईईसी 61400 - 13 यांत्रिक लोड मापन
आईईसी 61400 - 14 ध्विन विद्युत के स्तर पर टोनैलिटी की घोषणा
आईईसी 61400 - 21 विद्युत गुणवत्ता विशेषताओं के मापन
आईईसी 61400 - 22 अनुरूपता परीक्षण और पवन ऊर्जा टरबाइन के प्रमाणन
आईईसी 61400 - 23 टी.आर. पूर्ण पैमाने पर संरचनात्मक ब्लेड परीक्षण आईईसी 61400 - 24 टी.आर. विद्युत संरक्षण
आईईसी 61400 - 25-(1-6) संचार
आईईसी 61400 - 26 टी. एस. उपलब्धता
आईईसी 61400 - 27 पवन ऊर्जा उत्पादन के लिए विद्युत सिमुलेशन मॉडल
आईईसी 60076 -16: पवन ऊर्जा टरबाइन अनुप्रयोगों के लिए ट्रांसफॉर्मर

### विद्युत गुणवत्ता की विशेष समस्याएं

इस खंड में महत्वपूर्ण विद्युत गुणवत्ता विषय जिनका संबंध पवन ऊर्जा टरबाइन क्षेत्रों के एकीकरण में कमजोर ग्रिड से संबंधित है उन्हें क्षेत्र अध्ययन में विद्युत गुणवत्ता को चिह्नित करने हेतु दर्शाया गया है, इनके लिए निम्न समस्याओं की पहचान की गई है:

- क) ग्रिड उपलब्धता और क्षमता
- ख) प्रतिक्रियाशील विद्युत
- ग) वोल्टेज असंतुलन
- घ) वोल्टेज श्रृंखला
- ड.) आवृत्ति श्रृंखला
- च) हार्मोनिक्स और इंटर-हार्मोनिक्स
- छ) वोल्टेज़ में उतार-चढ़ाव
- ज) अस्थिर विद्युत इंजेक्शन

उपर्युक्त में से वर्तमान समय में विद्युत बोर्डों के लिए पवन ऊर्जा टरबाइन प्रचालन को प्रभावित करने वाले प्राथमिक मानकों में प्रतिक्रियाशील विद्युत अधिक महत्वपूर्ण पैरामीटर है, जबिक ग्रिड उपलब्धता, आवृत्ति श्रृंखला, वोल्टेज़ में उतार-चढ़ाव और वोल्टेज़ श्रृंखला मुख्य हैं।

## क) ग्रिड उपलब्धता और क्षमता

पवन ऊर्जा टरबाइन क्षेत्रों का विकास नब्बे के दशक में बहुत अधिक किया गया था। विद्युत बोर्ड आवश्यकता के अनुरूप ग्रिड सुदृढीकरण के साथ विकास की अनुवर्ती कार्रवाई हेतु सक्षम नहीं था। निकासी क्षमता इसकी मुख्य कमजोरी थी। अपर्याप्त निकासी क्षमता के परिणामस्वरूप, पवन ऊर्जा टरबाइन क्षेत्रों



को नियमित रूप से उच्च त्वरा मौसम के समय ग्रिड से काट दिया जाता था। अपर्याप्त निकासी क्षमता के कारण कटौती हुई है। इसके अतिरिक्त उपस्टेशनों की क्षमता ने पवन ऊर्जा टरबाइन क्षेत्रों में ग्रिड उपलब्धता को प्रभावित किया है। पवन ऊर्जा टरबाइन क्षेत्रों के फीडरों में अपर्याप्त उपस्टेशनों के ट्रांसफार्मर की क्षमता के कारण उच्च त्वरा मौसम के समय में इसे ग्रिड से काट दिया जाता था।

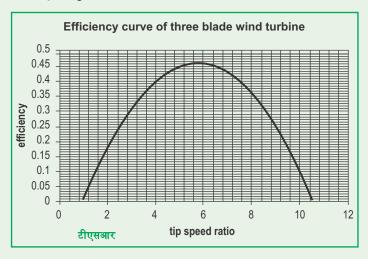
### ख) प्रतिक्रियाशील विद्युत

अधिकतर पवन ऊर्जा टरबाइन के साथ जुड़े हुए इनडक्शन जनरेटर से यांत्रिक विद्युत के माध्यम से उसे विद्युत में परिवर्तित कर लिया जाता है। इन इनडक्शन जनरेटरों को ग्रिड से प्रतिक्रियाशील विद्युत की आवश्यकता होती है। कृषि पंपों के कारण विद्युत प्रणाली पर लोड भी मुख्य रूप से एक महत्वपूर्ण प्रतिक्रियाशील विद्युत का उपभोग करता है, जिसके परिणामस्वरूप प्रतिक्रियाशील विद्युत की मांग ट्रांसमीशन में हानि का कारण बनती है। प्रतिक्रियाशील विद्युत उपभोग के परिणामस्वरूप विद्युत स्टेशनों की क्षमता कम हो जाती है जिसके कारण अधिकतम मांग की आपूर्ति करने में अक्षम होती है जो कि एक महत्वपूर्ण विषय है। और अत्यधिक प्रतिक्रियाशील विद्युत का उपभोग विद्युत व्यवस्था की स्थिरता के लिए महत्वपूर्ण हो सकता है।

### ग) वोल्टेज़ असंतुलन

एकल पवन ऊर्जा टरबाइन या पवन ऊर्जा टरबाइन के छोटे-छोटे समूह वर्तमान समय में कुछ क्षेत्रों में ग्रामीण लोड फीडरों के साथ जोड़े गए हैं। अधिकतम विद्युत मांग की आपूर्ति के समय विद्युत बोर्ड लोड शेड्डिंग का अलग-अलग चरणों में अभ्यास करता है। लोड शेड्डिंग के कारण विद्युत वोल्टेज़ में असंतुलन हो जाता है जिससे पवन ऊर्जा टरबाइन में ट्रिपिंग हो जाती है।

## घ) वोल्टेज़ श्रृंखला


विद्युत बोर्ड के अनुसार पवन ऊर्जा टरबाइन क्षेत्रों में पवन ऊर्जा टरबाइन टर्मिनलों के वोल्टेज़ की स्थिरता में परिवर्तन +5% से -% तक होता है। बहुत कम वोल्टेज़ पवन ऊर्जा टरबाइन के ट्रिपिंग के लिए रिले सुरक्षा का कारण बन सकता है। स्थिर वोल्टेज़ भी इनडक्शन जनरेटर में हानि को प्रभावित करती है। कम वोल्टेज़ के लिए, कोई लोड नहीं, लोह-नुक्सान के कारण हानि कम होती है, जबिक पूर्ण-लोड (अर्थात एक दर पर विद्युत हानि), वृद्धि के कारण हानि, जनरेटर विंगडिन्गस में विद्युत वृद्धि के कारण होती है।

# ड) आवृत्ति श्रृंखला

विद्युत बोर्डों और निर्माताओं के अनुसार, ग्रिड आवृत्ति 47 से 51.5 हर्ट्ज के लिए भिन्न हो सकती है। अधिकांशतः आवृत्ति की दर 50 हर्ट्ज से कम होती है। इनडक्शन जनरेटर के साथ पवन ऊर्जा टरबाइन सीधे ग्रिड से जुड़ा होता है अतः रोटर गति और पवन ऊर्जा टरबाइन के एरोडाईनेमिक प्रदर्शन को आवृत्ति द्वारा संशोधित किया जाता है। आवृत्ति में भिन्नता एक पवन ऊर्जा टरबाइन जनरेटर में एरोडाईनेमिक दक्षता को प्रभावित करती है और इससे एक बड़ी सीमा तक यह विद्युत उत्पादन को प्रभावित करती है। आवृत्ति की विविधताएं नॉन-ऑपटिमल टिप की गति के अनुपात में प्रचालन करती है, जिससे

एरोडाईनेमिक क्षमता कम हो जाती है। इससे पवन ऊर्जा टरबाइन की ऊर्जा और विद्युत उत्पादन में कमी हो जाती है। 3 ब्लेडयुक्त पवन ऊर्जा टरबाइन के एक विशिष्ट एरोडाईनेमिक दक्षता का चित्र नीचे दर्शाया गया है।

और मंद आवृत्तियों पर वीएआर का विद्युत प्रभाव कारक सुधार केपीसेटर उसके उत्पादन को कम करता है और ट्रांसफार्मर में फ्लक्स उसमें वृद्धि करता है जिसके परिणामस्वरूप वे परिपूर्णता की ओर बढ़ते हैं और इनसे वीएआर का उपभोग बढ़ जाता है जिससे हानि अधिक होती है और उत्पादन कम हो जाता है। उपर्युक्त की समस्या को कम करने के लिए वैयक्तिक पवन ऊर्जा



टरबाइन जेनरेटर इंटरफेसिंग को ग्रिड से एक अतुल्यकालिक लिंक (एसी-डीसी-एसी लिंक) के रूप देखा जा सकता है जैसा कि निम्नवत आंकड़ों में दर्शाया गया है।

# च) हार्मोनिक्स और इंटर-हार्मोनिक्स

पवन ऊर्जा टरबाइन से हार्मोनिक और इंटर-हार्मोनिक्स धाराओं के उत्सर्जन से सेवा में इन्डक्शन जनरेटर नगण्य होने की आशा हो गई है। पवन ऊर्जा टरबाइन, पवन ऊर्जा विद्युत कन्वर्टर्स के माध्यम से ग्रिड से जुड़े हैं हालांकि



### 'पवन' - 51वां अंक अक्तूबर - दिसम्बर 2016


हार्मोनिक और / या इंटर-हार्मोनिक्स धाराओं का प्रवाह वोल्टेज़ विरूपण करने में योगदान देते हैं। नई प्रौद्योगिकियों के आधार पर इनवर्टर से हार्मोनिक्स उत्सर्जन की गति पवन ऊर्जा टरबाइन में काफी पुराने प्रयोग किए जाने वाले कन्वर्टर्स में कम आवृत्तियों की तुलना में उत्सर्जन की गति को सीमित करती है, इसकी अपेक्षाकृत वे उच्च आवृत्तियों में इंटर-हार्मोनिक्स का उत्पादन फिल्टर करने में सुविधाजनक होते हैं जो कि कम आवृत्तियों में सुगम होते हैं।

### छ) वोल्टेज़ में उतार-चढ़ाव

उपभोक्ताओं को वोल्टेज़ की आपूर्ति में उतार चढ़ाव, आवृत्ति और आयाम के उतार चढ़ाव पर निर्भर करता है, लैंप से रोशनी में झिलमिलाहट, सार्वजनिक जीवन में, लोगों में झुंझलाहट उत्पन्न करती है। पवन ऊर्जा टरबाइन से विद्युत में अस्थिरता और उतार-चढ़ाव होता है, और इसलिए पवन ऊर्जा टरबाइन द्वारा ग्रिड में दिए गए विद्युत वोल्टेज में उतार-चढ़ाव होता है। वोल्टेज़ के उतार-चढ़ाव की चरम सीमा में वोल्टेज़ का पतन-सा हो जाता है जिससे वोल्टेज़ ड्रॉप हो जाता है और इस प्रतिक्रिया के कारण विद्युत उपयोग में अधिक वृद्धि हो जाती है।

### ज) अस्थिर विद्युत के इंजेक्शन

विद्युत (ऊर्जा) के स्वभाव से ही हवा में स्थिरता नहीं होती है इसलिए इसे वार्षिक, मासिक, दैनिक और प्रति घंटा आदि रूपों में आंका जाता है। विद्युत के उत्पादन और इनजेक्शन के परिणाम में भी अस्थिरता और उतार-चढ़ाव होता है। इस समस्या के समाधान के लिए उचित होगा कि अधिक संख्या में पवन ऊर्जा टरबाइनों को एक सामान्य बिंदु पर जोड़ा जाए और पवन ऊर्जा टरबाइनों को विन्यस्त करने के लिए अन्य नवीकरणीय ऊर्जा स्रोतों, पारंपरिक ऊर्जा स्रोतों और / या भंडारण तत्वों के साथ संयोजन रूप में प्रचालन हेतु एक एकीकृत ऊर्जा प्रणाली के रूप में रखा जाए।



#### निष्कर्ष

विद्युत गुणवत्ता हेतु ग्रिड से जुड़े पवन ऊर्जा टरबाइनों के लिए, जो प्रासंगिक हो सकता है, उसके विभिन्न पहलुओं का अवलोकन एवं विश्लेषण किया गया। विद्युत की परिवर्तनशीलता उसकी अस्थिरता, उतार-चढ़ाव में वृद्धि के साथ उत्सर्जन बढ़ने के साथ-साथ इसमें झिलमिलाहट करती है। पवन ऊर्जा टरबाइन क्षेत्रों के विकास में एकीकृत / समग्र दृष्टिकोण की आवश्यकता होती है। विद्युत गुणवत्ता के लिए पवन ऊर्जा विद्युत जनरेटर की ग्रिड इनटरफेसिंग संबंधी समस्याएं कम करने हेतु विद्युत कंडीशिनेंग उपकरणों को शामिल किया जाना चाहिए। विद्युत गुणवत्ता और पवन ऊर्जा टरबाइन क्षेत्रों, मानकों और दिशा निर्देशों की परिचालन क्षमता में सुधार की सुविधा करने के लिए, पवन ऊर्जा टरबाइन क्षेत्रों की ग्रिड इनटरफेसिंग हेतु, विद्युत गुणवत्ता मानक तैयार किए जाने चाहिए। विद्युत की गुणवत्ता सुनिश्चित करने के लिए दोनों ओर से इनका कठोरता से अनुपालन किया जाना चाहिए। टैरिफ संरचनाएं विकसित की जानी चाहिए और विद्युत गुणवत्ता में सुधार करने वालों को प्रोत्साहन और प्रणाली को प्रदूषित करने वालों को दंड देने का प्रावधान किया जाना चाहिए।

### शोध पत्र - संदर्भ साहित्य

[1] मुलज़ादी, ई.; बटर्फील्ड, सी.; जिवोर्जिएन, वी.; "The Impact of the Output Power Fluctuation of a Wind Farm on a Power Grid" अपतटीय पवन ऊर्जा क्षेत्रों के लिए पारेषण नेटवर्क पर तृतीय अंतर्राष्ट्रीय कार्यशाला, रॉयल प्रौद्योगिकी संस्थान, स्टॉकहोम, स्वीडन,11-12 अप्रैल 2002।

[2] वू वेन थोंग; "Impact of distributed generation on power system operation and control"; पीएचडी थीसिस, कथोलिएके विश्वविद्यालय, लोवेन, मई 2006।

[3] बंसल, आर.सी.; भट्टी, टी.एस., और कोठारी, डी.पी. (2001) "Some aspects of grid connected wind electric energy conversion system", इंडिसिप्लनरी अभियांत्रिकी संस्थान जर्नल (भारत), मई, वॉल्यूम। 82, पृ। 25-28।



#### प्रकाशन राष्ट्रीय पवन ऊर्जा संस्थान (रा.प.ऊ.सं.)

भारत सरकार के नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) का स्वायत्त अनुसंधान एवं विकास संस्थान ।

वेलचेरी-ताम्बरम प्रमुख मार्ग, पल्लिकरणे, चेन्नई - 600 100

दूरभाष : +91-44-2900 1162 / 1167 / 1195 फैक्स : +91-44-2246 3980

इमेल : info.niwe@nic.in वेबसाइट : http://niwe.res.in

f www.facebook.com/niwechennai www.twitter.com/niwe\_chennai

नि:शुल्क डाऊनलोड कीजिए

पवन के सभी अंक रा.प.ऊ.सं. की वेबसाइट पर उपलब्ध हैं आप नि:शुल्क डाऊनलोड कर सकते हैं http://niwe.res.in