57वां अंक अप्रैल -जून 2018

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई की समाचार पत्रिका 'पवत'

संपादकीय

भारत देश पवन ऊर्जा के क्षेत्र में सबसे अधिक संस्थापित क्षमता में, चीन, अमरीका और जर्मनी के पश्चात, चतुर्थ श्रेणी पर है। भारत में पवन ऊर्जा की कुल संस्थापित क्षमता वर्ष 2018 के माह मार्च तक लगभग 34 गीगावॉट है।

विशेषज्ञों का मानना है कि भारत की विशाल विद्युत ग्रिंड प्रणाली को नवीकरणीय ऊर्जा से उत्पन्न होने वाली, विद्युत के उतारचढ़ाव, अनियमित प्रकृति से निपटने के लिए, संतुलित करने और मांग के साथ आपूर्ति को बनाए रखने की आवश्यकता है। भारत के द्वारा वर्ष 2022 तक 175 गीगावॉट का एक महत्वाकांक्षी नवीकरणीय लक्ष्य निर्धारित किया गया है जो कि एक विचारणीय विषय भी है।

नवीकरणीय ऊर्जा की उतार-चढ़ाव प्रकृति, वह चाहे सौर ऊर्जा हो या पवन ऊर्जा हो, विश्व की किसी भी ग्रिड के लिए एक जटिलता ही होती है।

राष्ट्रीय पवन कर्जा संस्थान के पवन कर्जा संसाधन निर्धारण और अपतटीय पवन कर्जा प्रभाग के द्वारा वर्ष 2017 के माह नवंबर में गुजरात राज्य के खंभात की खाड़ी में LiDAR के द्वारा प्रथम अपतटीय इकाई संस्थापित की गई जिससे पूर्ण पवन कर्जा आँकड़े प्राप्त किए जा रहे हैं। दूसरी ओर 70 वर्ग किलोमीटर क्षेत्र में फेला भारत का प्रथम अपतटीय पार्क, जिसमें LiDAR क्षेत्र एवं भूवैज्ञानिक मूल्यांकन एवं 20 मेगावॉट पवन कर्जा क्षेत्र की गहराई है, प्रत्येक सलाहकार को आगे बढ़ने के लिए मार्गदर्शन प्रदान करता है। एक सर्वेक्षण के माध्यम से बाथमीट्री जानकारी, जल, समुद्र की गहराई और समुद्र के ऊपर की स्थलाकृति के विषय में विभिन्न जानकारी से कुछ नीचे के प्रोफ़ाइल प्राप्त किए जाते हैं जो समुद्र तल की स्थितियों की समझ को सटीक रूप से प्रदान करती है।

देश भर में पवन ऊर्जा उत्पादन की जानकारी, प्रत्येक पवन ऊर्जा टरबाइन की 'जियो-टैगिंग' के साथ एक ऑन-लाइन रजिस्ट्री संस्थापित की गई और प्रत्येक पवन ऊर्जा टरबाइन को एक विशिष्ट पहचान कोड प्रदान किया गया, जिससे कि पवन ऊर्जा उत्पादन के श्रेष्ठतर पूर्वानुमान के लिए उचित थ्रस्ट एक्शन प्रदान करने के लिए स्थैतिक और गतिशील आँकड़ों की निकासी की सुविधा प्रदान की जा सके।

दूसरी ओर, सौर ऊर्जा और पवन ऊर्जा निर्धारण इकाई के ग्रिड

एकीकरण में अस्थिर उत्पादन का पूर्वानुमान करना एक महत्वपूर्ण और चुनौतीपूर्ण कार्य था। हालाँकि राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा इन चुनौतियों को '(पवन ऊर्जा और सौर ऊर्जा उत्पादन) परिवर्तनीय उत्पादन पूर्वानुमान उत्कृष्ट केंद्र' की स्थापना करते हुए इस दिशा में आगे कार्य करते हुए संवृद्ध किया गया, जिसके परिणामस्वरूप पूर्वानुमान सटीकता में व्यापक रूप से सुधार देखा गया। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा इसरो – एसएसी अहमदाबाद के साथ उच्च रिजोल्यूशन सांख्यिकी मॉडल आउटपुट के लिए समझौता ज्ञापन पर हस्ताक्षर किए गए हैं। उपर्युक्त के अतिरिक्त, स्वदेशी प्रक्रिया के एक भाग के रूप में राष्ट्रीय पवन ऊर्जा संस्थान के एक समूह के द्वारा उसी दिन के (एका दिवसीय - इंट्राडे) पूर्वानुमानों के लिए पूर्वानुमान मॉडल तैयार किया गया और इस पूर्वानुमान मॉडल का परीक्षण प्रक्रिया के अंतर्गत कार्य प्रगति पर है।

राष्ट्रीय पवन ऊर्जा संस्थान की ज्ञान हस्तांतरण और क्षमता निर्माण के प्रति प्रतिबद्धता के अंतर्गत संस्थान के अधिकारियों द्वारा बाह्य मंच और आंतरिक मंच, पाठ्यक्रम कार्यक्रमों में कई आमंत्रित व्याख्यान प्रस्तुत किए गए हैं।

राष्ट्रीय पवन ऊर्जा संस्थान के लिए यह एक गर्व की बात है कि इसके 4 सौर ऊर्जा विकिरण संसाधन निर्धारण (एसआरआरए) स्टेशनों को एशिया के 9 बीएसआरएन वैश्विक नेटवर्क में शामिल किया गया है। बेसलाइन सफेंस रेडिएशन नेटवर्क (BSRN) विश्व जलवायु अनुसंधान कार्यक्रम (WCRP) के अंतर्गत एक परियोजना है, जिसका उद्देश्य पृथ्वी की सतह पर पृथ्वी के विकिरण क्षेत्र में महत्वपूर्ण परिवर्तनों का पता लगाना होता है। जलवायु अनुसंधान के लिए विकिरण मापन अपरिहार्य हैं क्योंकि वे पृथ्वी के वायुमंडल में रेडियोधर्मी हस्तांतरण के सिद्धांत के लिए श्रेष्ठतर जाँच प्रदान करते हैं और इनका उपयोग मौसम और जलवायु पूर्वानुमान हेतु अभिकल्प किए गए मॉडल के मूल्यांकन और सुधार के लिए किया जाता है। इसके अतिरिक्त, सतह विकिरण के दीर्घकालिक मापन जलवायु परिवर्तन को खोजने हेतु भी यह एक अवसर प्रदान करते हैं।

राष्ट्रीय पवन ऊर्जा संस्थान को चेन्नई में आयोजित नगर राजभाषा कार्यांवयन समिति की बैठक में वर्ष 2015-17 की अवधि के लिए राजभाषा के प्रगतिशील उपयोग में सर्वश्रेष्ठ प्रदर्शन के लिए प्रथम स्थान प्राप्त करने के लिए प्रतिष्ठित शील्ड और प्रशस्ति पत्र से सम्मानित किया गया है।

नीवे NIWE

ISO 9001 : 2008

URL:http://niwe.res.in

www.facebook.com/niwechennai www.twitter.com/niwe_chennai

अनुक्रमणिका

 + राष्ट्रीय पवन ऊर्जा संस्थान – सक्रिय

+ राष्ट्रीय पवन ऊर्जा संस्थान का

स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल – एक अवलोकन — 10

संपादकीय समिति

मुख्य संपादक

डॉ. के. बलरामन महानिदेशक, NIWE

सह-संपादक

डॉ. पी. कलगवेल अपर निदेशक, ITCS

सदस्यगण

डॉ राजेश कत्याल

उप महानिदेशक और समूह प्रमुख, WRA&O

डॉ. जी गिरिधर

उप महानिदेशक और समूह प्रमुख SRRA

ए. मोहम्मद हुसैन

उप महानिदेशक और समुह प्रमुख WTRS

डी. लक्ष्मणन

उप महानिदेशक (F&A) और समूह प्रमुख F&A एवं ESD

एस. ए. मैथ्यू

निदेशक और समूह प्रमुख T&F

ए. सेंथिल कुमार

निदेशक और समूह प्रमुख, S&C

जे.सी. डेविड सोलोमन

अपर निदेशक और समूह प्रमुख, R&D, IT & ITCS

के. भ्रूपति

अपर निदेशक, WRA&O

पवन ऊर्जा संसाधन निर्धारण और अपतटीय पवन ऊर्जा

पवन ऊर्जा संसाधन निर्धारण (अछुते / नवीन क्षेत्र)

उपर्युक्त अविध में, 2 राज्यों में 3 पवन ऊर्जा निगरानी स्टेशन संस्थापित किए गए। (1 मिणपुर में और 2 अरुणाचलम में). उपर्युक्त के अतिरिक्त, उत्तर- पूर्व के मेघालय, मिज़ोरम, और त्रिपुरा राज्यों में 11 स्थानों पर 11 एयरटेल टेलीकॉम टावर्स का उपयोग करते हुए पवन ऊर्जा निगरानी स्टेशन संस्थापित किए गए। वर्तमान में, नवीन और नवीकरणीय ऊर्जा मंत्रालय और विभिन्न उद्यमियों द्वारा वित्त पोषित विभिन्न पवन ऊर्जा निगरानी परियोजनाओं के अंतर्गत 12 राज्यों में 69 पवन ऊर्जा निगरानी स्टेशन और टेलीकॉम टावर संस्थापित किए गए हैं।

परामर्शी परियोजना

निम्नलिखित परामर्शी परियोजनाएं पूर्ण की गई हैं और देश में तटवर्ती पवन ऊर्जा टरबाइन क्षेत्रों के विकास हेतु रिपोर्ट प्रस्तुत की गई हैं।

- 4 स्थानों के लिए पवन उर्जा निगरानी की प्रक्रिया का सत्यापन।
- 1 स्थान के लिए माइक्रोसाइटिंग और ऊर्जा मूल्यांकन।
- 3स्थानों के लिए ऊर्जा संवृद्धि निर्धारण।
- 1स्थान के लिए ऊर्जा संवृद्धि निर्धारण के लिए मान्यता।

देश भर में संस्थापित पवन ऊर्जा टरबाइनों का भू-अंकितकरण

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा देश के वर्तमान और प्रस्तावित संस्थापित

भू-स्थानिक मंच पर पवन ऊर्जा टरबाइन स्थिर जानकारी

पवन ऊर्जा निगरानी स्टेशनों का एक केंद्रीकृत डेटाबेस तैयार किया जा रहा है। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा राज्य नोडल निकायों और अन्य हितधारकों से आंकड़ा संग्रहण कार्य आरम्भ कर दिया गया है। वर्तमान में, लगभग 15000 मेगावॉट पवन ऊर्जा टरबाइन संस्थापनाओं की जानकारी प्राप्त कर ली गई हैं और इनके

सत्यापन की प्रक्रिया का कार्य प्रगति पर है।

वेब पोर्टल के विकास की प्रक्रिया आरम्भ कर दी गई है और इसके लिए कार्य योजना तैयार कर ली गई है। उपर्युक्त वेब पोर्टल विकसित करने हेतु आवश्यक अनुमोदन प्राप्त किया गया था। विस्तृत आवश्यक विनिर्देश की तैयारी की जा रही है। उपर्युक्त वेब पोर्टल के विकास कार्य हेतु विक्रेता को निविदा के माध्यम से पहचाना जाएगा।

गुजरात तट पर खंभात की खाड़ी में - भारत में प्रथम अपतटीय पवन ऊर्जा क्षेत्र के लिए'रुचि की अभिव्यक्ति'

गुजरात तट पर खंभात की खाड़ी में, भारत में प्रथम 1000 मेगावॉट वाणिज्यिक अपतटीय पवन ऊर्जा क्षेत्र के विकास के लिए 'रुचि की अभिव्यक्ति ' के अनुरोध को राष्ट्रीय पवन ऊर्जा संस्थान की वेबसाइट में अपलोड कर दिया गया है जिसमें निम्नवत अपेक्षित हैं:

- वैश्विक संस्थाएं जिनके पास 250 मेगावॉट से अधिक की पवन ऊर्जा टरबाइन संस्थापना की परियोजनाओं का अनुभव है।
- भारतीय तटवर्ती पवन ऊर्जा टरबाइन निर्माता / विद्युत विकासकर्ता, जिनके द्वारा भारत में 250 मेगावॉट की तटवर्ती पवन ऊर्जा परियोजनाएं संस्थापित की गई हैं, जिन्होंने वैश्विक अपतटीय पवन ऊर्जा टरबाइन मूल उपकरण निर्माता (ओईएम) के साथ करार किया है या वैश्विक अपतटीय पवन ऊर्जा विद्युत विकासकर्ता के रूप में जिनके पास कम से कम 250 मेगावॉट अपतटीय पवन ऊर्जा विकसित करने का अनुभव है।

प्रारंभिक अध्ययन के अंतर्गत भारतीय प्रायद्वीप और पश्चिमी तट के दक्षिणी छोर में दोनों अपतटीय क्षेत्रों में पवन ऊर्जा क्षमता के अच्छे संकेत दिखाई देते हैं।

उपर्युक्त प्रथम अपतटीय पवन ऊर्जा क्षेत्र के विकास हेतु विकासकर्ताओं का अंतिम चयन शॉर्टिलस्टेड संस्थाओं के मध्य प्रतिस्पर्धी बोली के माध्यम से किया जाएगा।

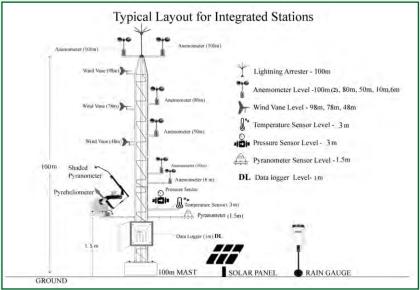
देश में अपतटीय पवन ऊर्जा के विकास की संवृद्धि हेतु खंभात की खाड़ी और मन्नार की खाड़ी में (पवन, लहर, ज्वार, जल प्रवाह, जल स्तर, आदि) महासागरीय मापन

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा, देश में अपतटीय पवन ऊर्जा के क्षेत्रों के विकास को बढ़ावा देने के लिए संभावित उपनगरों / ब्लॉकों की पहचान करने के उद्देश्य से गुजरात और तमिलनाड़ के सबसे बड़े समुद्री क्षेत्रों की खोज की प्रक्रिया ज़ारी है। इस उद्देश्य के लिए, व्यापक वित्तीय संसाधन मूल्यांकन करने के लिए चार LiDARs (गुजरात राज्य और तमिलनाडु राज्य, दोनों राज्यों में 2 - 2 LiDARs) क्रय करने का प्रस्ताव है। उपर्युक्त के अतिरिक्त, राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा समुद्र संबंधी / हाइड्रोग्राफिक मापन का प्रस्ताव किया गया है, जिसमें जल स्तर, लहरों की ऊंचाई और अवधि, समुद्रीय धारा -गति एवं दिशा और अन्य व्यत्पन्न पैरामीटर जैसे कि महत्वपूर्ण लहरों की ऊंचाई, लहरों की अवधि आदि, और LiDAR के आसपास और बाहर के क्षेत्र शामिल हैं। समुद्र और राज्य की स्थितियों को समझने के लिए गुजरात और तमिलनाड़ के तटवर्ती क्षेत्र से लिडार प्लेटफॉर्म या उपयुक्त क्षेत्र के आसपास मापन कार्य आवश्यक है। ये अपतटीय पवन ऊर्जा टरबाइन के प्लेटफॉर्म की नींव आदि तैयार करने हेत् आवश्यक माना गया है। अध्ययन के आधार पर, राष्ट्रीय पवन ऊर्जा संस्थान उस क्षेत्र के मौसम तथा प्रचालन एवं रखरखाव और संस्थापना की गतिविधियों को समझने हेतु आवश्यक योजना

उपर्युक्त क्षेत्र विशेषज्ञों, मैसर्स DNV-GL और मैसर्स राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान के परामर्श से राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा गुजरात तट पर LiDAR की संस्थापना के लिए 2 स्थानों को अन्तिम रूप देने के प्रस्ताव की प्रक्रिया का कार्य प्रगति पर है।

अंतरिम परियोजना की स्थिति रिपोर्ट (वित्तीय तिमाही अप्रैल 2018 से जून 2018) तैयार करने की प्रक्रिया का कार्य प्रगति पर है।

गुजरात के खंभात की खाड़ी में प्रस्तावित महासागरीय क्षेत्र


मानचित्रण एवं मापन के माध्यम से एकीकृत पवन ऊर्जा एवं सौर ऊर्जा संसाधन निर्धारण

नवीकरणीय ऊर्जा संसाधन की उपलब्धता और इसकी भौगोलिक भिन्नता पर विश्वसनीय पृष्ठभूमि की जानकारी सरकार के महत्वाकांक्षी लक्ष्यों को प्राप्त करने में एक प्रमुख भूमिका निभाएगी। ऊँचाई जितनी

विश्वसनीय पृष्ठभूमि की जानकारी सरकार के महत्वाकाक्षी लक्ष्यों को प्राप्त करने में एक प्रमुख भूमिका निभाएगी। ऊँचाई जितनी अधिक होती जाती है पवन की गित भी उतनी अधिक होती जाती है। पवन ऊर्जा टरबाइनों में हब की ऊंचाई का विस्तार करने से ऊर्जा उत्पादन की वृद्धि करने के प्रभावी समाधानों में से उपर्युक्त प्रक्रिया को एक समाधान के रूप में देखा जा रहा है। वर्तमान में, उन्नत तकनीक के साथ – साथ टरबाइनों की ऊंचाई 120 मीटर से 130 मीटर तक रखी जा रही है और हब ऊंचाई में एक और वृद्धि की आशा की जा रही है, जिसके लिए उच्चतर ऊँचाई के मानचित्र की आवश्यकता होगी। अध्ययनों से यह भी पता चला है कि सौर ऊर्जा और पवन ऊर्जा दोनों ही लगभग एक दूसरे के पूरक हैं। इन दोनों की वर्णसंकर प्रौद्योगिकियों से भूमि और ट्रांसमीशन प्रणाली सहित बुनियादी ढांचे के श्रेष्ठतर उपयोग के साथ- साथ परिवर्तनशीलता को कम करने में सहायता मिलेगी। और इस संबंध में एक वर्णसंकर संभावित मानचित्र हितधारकों को भावी जाँच और उपयुक्त स्थलों की पहचान करने के लिए बहुत सहायक सिद्ध होगा। राष्ट्रीय पवन

ऊर्जा संस्थान के द्वारा उन्नत संख्यात्मक मेसो-स्केल मॉडलिंग तकनीकों के माध्यम से संकेत देने योग्य नवीकरणीय ऊर्जा संभावित मानचित्र (120 मीटर और 150 मीटर ऊँचाई का पवन ऊर्जा मानचित्र और वर्णसंकर मानचित्र) तैयार करने का प्रस्ताव किया गया है और सरकार के महत्वाकांक्षी लक्ष्य हेतु एकीकृत पवन ऊर्जा और सौर ऊर्जा के मस्तूल और रिमोट सेंसिंग के साथ – साथ भू- मापन के मानचित्रों को मान्य किया गया है।

वर्तमान में, प्रथम 25 स्थलों का चयन, एकीकृत मौसम मस्तूल स्टेशनों का काम प्रगति पर है। उपर्युक्त के लिए समूह स्थान का चयन किया जा रहा है, जो कि बहुउद्देशीय, अर्थात, पवन ऊर्जा सौर ऊर्जा वर्णसंकर के विकास , मानचित्र सत्यापन, नवीन और अछूते क्षेत्रों की खोज़, पूर्वानुमान और पुनः विद्युतीकरण आदि के लिए उपयोगी होगा।

एकीकृत स्टेशनों के लिए विशिष्ट लेऑउट

परीक्षण और पूर्वानुमान

वृहद पवन ऊर्जा टरबाइन परीक्षण

मैसर्स ज़ॉयरॉन टेक्नोलॉजीज लिमिटेड कम्पनी के मध्य किए गए एक समझौते के अनुसार मध्य प्रदेश राज्य के रतलाम जिले के रिचादेवड़ा क्षेत्र में मैसर्स ज़ॉयरॉन टेक्नोलॉजीज लिमिटेड कम्पनी के XYRON 1000 किलोवॉट के संयंत्र के संरचनात्मक ढाँचे का पवन ऊर्जा टरबाइन-प्रकार परीक्षण किया गया। हस्ताक्षरित समझौते के अनुसार मापन कार्य पूर्ण किया गया।

मैसर्स इनोक्स विंड लिमिटेड कम्पनी के मध्य किए गए एक समझौते के अनुसार गुजरात राज्य के रानीपत गांव, मुली तालुक, सुरेंद्रनगर क्षेत्र में INOX 2000 किलोवॉट के 113 मीटर रोटर व्यास के पवन ऊर्जा टरबाइन में विद्युत वक्र मापन कार्य प्रगति पर है।

तमिलनाडु राज्य के तिरुनेलवेली जिला, तैनकाशी तालुक, पोऐगै ग्राम में, HTSC No. 2988, SFNo. 95/4, 5&6 B पार्ट, 49 मीटर रोटर व्यास के पायनियर 750 किलोवॉट के पवन ऊर्जा टरबाइन W 49 – HH 60 भार के पवन ऊर्जा टरबाइन के लिए विशेष मापन, सतत मापन, कार्य प्रगति पर है।

पूर्वानुमान

राष्ट्रीय पवन ऊर्जा संस्थान - स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल तमिलनाडु

- वर्तमान प्रक्रिया में सुधार के एक अंश के रूप में, विद्युत वक्र मॉडल एकत्रित किए गए और परीक्षण किया गया।
- मैसर्स NCMRWF के साथ समझौता ज्ञापन आलेख को अंतिम रूप दिए जाने का कार्य प्रगति पर है।
- वास्तविक उत्पादन आँकड़ों में उपलब्ध विभिन्न समस्याओं के समाधान के लिए मैसर्स IWPA और मैसर्स TANGEDCO के साथ समन्वय किया गया।
- मैसर्स TANGEDCO के पोषक उत्पादन आँकड़ा भंडारण एवं प्रक्रिया पद्धित में गित प्रदान करने हेतु वर्तमान उत्पादन आँकड़ा भंडारण स्थापय पद्धित और आँकड़ा प्रक्रिया पद्धित से संग्रहण और संसाधन पद्धित में परिवर्तन किए गए।

- मैसर्स TANGEDCO से प्राप्त GC फीडर स्थैतिक आँकड़ों को संसाधित किया गया है और मैसर्स TANGEDCO को अपनी प्रतिक्रिया प्रेषित की गई है।
- विभिन्न स्थानों की स्थिति का तुलनात्मक अध्ययन करने के लिए IITM संख्यात्मक मौसम पूर्वानुमान आँकड़ों की तुलना मैसर्स NCMRWF और मैसर्स ISRO-SAC के संख्यात्मक मौसम पूर्वानुमान आँकड़ों के साथ की गई।
- राष्ट्रीय पवन ऊर्जा संस्थान में संख्यात्मक मौसम पूर्वानुमान आँकड़ों की सतत प्राप्ति के संबंध में मैसर्स NCMRWF और मैसर्स ISRO-SAC के साथ विभिन्न समन्वय गतिविधियाँ की गई।
- अप्रैल 2018 से मई 2018 तक की अवधि में मैसर्स वोर्टेक्स के समेकित पूर्वानुमान का त्रुटि विश्लेषण किया गया और भविष्य में और अधिक सुधार करने के लिए मैसर्स वोर्टेक्स को प्रतिक्रिया प्रेषित की गई।
- तमिलनाडु राज्य के लिए मार्च 2018 से मई 2018 तक की अवधि के लिए त्रुटि विश्लेषण रिपोर्ट तैयार की गई।
- राष्ट्रीय पवन ऊर्जा संस्थान के पूर्वानुमान एफटीपी की विभिन्न गतिविधियों पर नज़र रखने के लिए एक स्वचालित लॉगिंग प्रणाली बनाई गई।
- नवीकरणीय ऊर्जा समृद्ध राज्यों के लिए पवन ऊर्जा पूर्वानुमान सेवाएं आरम्भ की जा रही हैं।

गुजरात

- अप्रैल 2018 से पूर्ण गुजरात राज्य के लिए प्रायोगिक प्रचालन पवन ऊर्जा विद्युत पूर्वानुमान सेवाएं आरम्भ की गई हैं।
- गुजरात राज्य के राज्य भार प्रेषण केंद्र (SLDC) से संयुक्त स्तर पर वास्तविक विद्युत उत्पादन के आँकडओं को एकत्रित करने और संसाधित करने के लिए एक स्वचालित प्रणाली संस्थापित की गई।
- गुजरात राज्य के सभी 69 सबस्टेशनों के लिए दिशा वार त्रुटि विश्लेषण कार्य पूर्ण किया गया।
- गुजरात राज्य के लिए, मार्च 2018 से मई 2018 तक की अवधि की, त्रुटि विश्लेषण रिपोर्ट तैयार की गई।

राजस्थान

 राजस्थान राज्य के राज्य भार प्रेषण केंद्र (SLDC) के द्वारा राष्ट्रीय पवन ऊर्जा संस्थान को कुछ स्थैतिक आँकड़े प्रदान किए गए हैं। उपर्युक्त स्थैतिक आँकड़ों में अतिरिक्त जानकारी और आवश्यक टिप्पणियां प्राप्त करने के लिए राजस्थान राज्य के राज्य भार प्रेषण केंद्र को प्रेषित की गई हैं। राष्ट्रीय पवन ऊर्जा संस्थान उपर्युक्त कार्य के संदर्भ में राजस्थान राज्य के राज्य भार प्रेषण केंद्र के संपर्क में है जिससे कि पवन ऊर्जा पूर्वानुमान मॉडल को शुरू करने के लिए स्थैतिक आँकड़े और ऐतिहासिक उत्पादन के अद्यनित आंकड़े प्राप्त किए जा सकें।

आंध्र प्रदेश

- दिनांक 27 अप्रैल 2018 को राष्ट्रीय पवन ऊर्जा संस्थान और आंध्र प्रदेश राज्य के राज्य भार प्रेषण केंद्र (SLDC) के मध्य एनडीए, समझोते पर पूर्ण आंध्र प्रदेश राज्य के लिए प्रायोगिक पवन ऊर्जा विद्युत पूर्वानुमान परियोजना हेत् हस्ताक्षर किए गए हैं।
- आंध्र प्रदेश राज्य के राज्य भार प्रेषण केंद्र (SLDC) के साथ आवश्यक

स्थैतिक और ऐतिहासिक विद्युत उत्पादन आँकड़े प्रदान करने हेतु अनुवर्ती कार्रवाई की गई।

कर्नाटक

 दिनांक 07 मई 2018 को राष्ट्रीय पवन ऊर्जा संस्थान और कर्नाटक राज्य के राज्य भार प्रेषण केंद्र (SLDC) के मध्य एनडीए, समझोते पर पूर्ण कर्नाटक राज्य के लिए प्रायोगिक पवन ऊर्जा विद्युत पूर्वानुमान परियोजना हेतु हस्ताक्षर किए गए हैं।

 कर्नाटक राज्य के राज्य भार प्रेषण केंद्र से प्राप्त स्थैतिक आँकड़ों को आवश्यकतानुसार संसाधित किया गया। वर्तमान में, राष्ट्रीय पवन ऊर्जा संस्थान आवश्यक ऐतिहासिक / वास्तविक समय विद्युत उत्पादन आँकड़े प्राप्त करने के लिए कर्नाटक राज्य के राज्य भार प्रेषण केंद्र के साथ अनुवर्ती कार्रवाई कर रहा है।

मध्य प्रदेश और महाराष्ट्र

 समझौता ज्ञापन / एनडीए आलेख को अंतिम रूप देने के लिए मध्य प्रदेश राज्य के राज्य भार प्रेषण केंद्र और महाराष्ट्र राज्य के राज्य भार प्रेषण केंद्र (SLDC) के साथ समन्वय किया गया।

लघु पवन ऊर्जा टरबाइन परीक्षण

- राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा तिमलनाडु में कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में एक किलोवॉट के एसएम २ मॉडल के पवन ऊर्जा टरबाइन - प्रकार का परीक्षण किया है।
- राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा तिमलनाडु में कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में मैसर्स विंडस्ट्रीम एनर्जी टेक्नोलॉजीज इंडिया प्राइवेट लिमिटेड की मॉडल वात स्मार्ट, वर्टिकल एक्सिस पवन ऊर्जा टरबाइन - प्रकार (०,० . किलोवॉट) के लिए परीक्षण कार्य किया गया। मापन कार्य प्रगति पर है।

मानक एवं प्रमाणन और अनुसंधान एवं विकास

और वैज्ञानिक एवं तकनीकी अनुसंधान

नवीन और नवीकरणीय ऊर्जा मंत्रालय के दिशानिर्देशों के अनुसार भारत में प्रोटोटाइप पवन ऊर्जा टरबाइन की स्थापना के संबंध में पवन ऊर्जा

टरबाइन निर्माताओं से प्राप्त तीन प्रोटोटाइप पवन ऊर्जा टरबाइन मॉडल

 प्रोटोटाइप पवन ऊर्जा टरबाइन मॉडल के संदर्भ में एक सिमिति की बैठक आयोजित की गई।

के प्रलेखीकरण की पूर्ण समीक्षा / सत्यापन कार्य पूर्ण किया गया।

- सिमिति की उपर्युक्त बैठक के पश्चात् नवीन और नवीकरणीय ऊर्जा मंत्रालय के दिशानिर्देशों के अनुसार प्रोटोटाइप पवन ऊर्जा टरबाइनों की स्थापना के संबंध में एक और प्रोटोटाइप पवन ऊर्जा टरबाइन मॉडल के लिए आलेख प्राप्त किया गया।
- आईआरईडीए के साथ एक तकनीकी यथोचित परिश्रम परियोजना कार्य प्रगति पर है।
- 47 मीटर रोटर व्यास के पवन ऊर्जा टरबाइन मॉडल के साथ वी 39 500 किलोवॉट के प्रमाण पत्र नवीनीकरण परियोजना के कार्य को सफलतापूर्वक पूर्ण किया गया और मैसर्स आरआरबी एनर्जी लिमिटेड को 47 मीटर रोटर व्यास पवन ऊर्जा टरबाइन मॉडल के साथ वी39 500 किलोवॉट के प्रमाणपत्र के नवीकरण ज़ारी करने हेतु राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक से अनुमोदन प्राप्त किया गया।
- पवन ऊर्जा टरबाइन मॉडल " पवन शक्ति 600 किलोवॉट " के प्रमाणपत्र के नवीकरण पर परियोजना के लिए प्रलेखन की समीक्षा / सत्यापन कार्य आरम्भ किया गया।
- पवन ऊर्जा टरबाइन मॉडल "जीडब्ल्यूएल 550" के प्रमाणपत्र के नवीकरण पर परियोजना के लिए प्रलेखन की समीक्षा / सत्यापन कार्य

- आरम्भ किया गया।
- राष्ट्रीय पवन ऊर्जा संस्थान चेन्नई में "आईएसओ 9001: 2015" पर जोखिम मूल्यांकन / सेटिंग के संदर्भ पर दिनांक 9 और 10 अप्रैल 2018 की अविध में मैसर्स डीएनवी जीएल–बिज़नेस अशुरेंस इंडिया प्राइवेट लिमिटेड द्वारा २ दिवसीय कार्यशाला का आयोजन किया गया।
- मानकों से संबंधित कार्यों के संबंध में भारतीय मानक ब्यूरो (बीआईएस)
 के साथ समन्वय कार्य प्रगति पर है।
- भारतीय मानक ब्यूरो के द्वारा प्रेषित चार आईईसी मसौदों के प्रलेखन की समीक्षा का कार्य पूर्ण कर लिया गया है। समीक्षा के आधार पर मसौदा आईईसी प्रलेखन की संस्तुति हेतु मत प्रदान करने का कार्य तैयार किया गया है और आईईसी टीसी 88 को अग्रेषित करने के लिए भारतीय मानक ब्यूरो को प्रेषित किया गया है।
- पवन ऊर्जा टरबाइन के संशोधित मॉडल और निर्माताओं की सूची के संबंध में पवन ऊर्जा टरबाइन - प्रकार प्रमाणन प्रमाणीकरण से संबंधित विभिन्न प्रश्नों के समाधान युक्त उत्तर हेतु नवीन और नवीकरणीय ऊर्जा मंत्रालय को निरंतर तकनीकी सहायता प्रदान की जा रही है।
- आईएसओ 9001: 2015 के अनुसार गुणवत्ता प्रबंधन प्रणाली के उन्नयन के लिए गुणवत्ता प्रबंधन प्रणाली आलेख तैयार किए गए हैं।
- गुणवत्ता प्रबंधन प्रणाली में निरंतर सुधार और रखरखाव कार्य प्रगति पर है।
- भारतीय पवन ऊर्जा टरबाइन प्रमाणन योजना की तैयारी के संदर्भ में विभिन्न कार्य पूर्ण कर लिए गए हैं और कुछ अन्य कार्य प्रगति पर हैं।

मैसर्स आरआरबी एनर्जी लिमिटेड को नवीनीकृत प्रमाणपत्र ज़ारी करते हुए।

आईएसओ १००1: ४०1० विषय पर कार्यशाला

अनुसंधान एवं विकास और सूचना प्रौद्योगिकी और सूचना, प्रशिक्षण एवं अनुकूतित सेवाएं

अनुसंधान एवं विकास

क) पूर्ण भारत अनुसंधान नेटवर्क - "उद्योग और अकादिमक समामेलन"

राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई के द्वारा वैश्विक पवन दिवस समारोह को, दिनांक 14 जून 2018 के इस सुअवसर को, राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में "पैन इंडिया रिसर्च नेटवर्क मीटिंग- इंडस्ट्री एंड एकेडेमिया अमलगमेशन" की प्रथम एक दिवसीय कार्यशाला के रूप में आयोजन हेतु चुना गया।

उपर्युक्त कार्यशाला भारतीय शिक्षा और पवन ऊर्जा उद्योग के मध्य वार्तालाप की एक सुनियोजित शृंखला का शुभारम्भ है जिससे कि उनके समामेलन को सुविधाजनक बनाने के लिए अनुकूल पारिस्थितिकी तंत्र बनाया जा सके। भारतीय पवन ऊर्जा क्षेत्र के अनुसंधान और विकास की आवश्यकताओं पर मनन और मंथन स्वदेशी अनुसंधान गतिविधियों को संवृद्धि प्रदान करने के उद्देश्य से किया गया है, जो पवन ऊर्जा प्रौद्योगिकी के विभिन्न पहलुओं में वैश्विक नेतृत्व प्रदान करने के लिए भारतीय पवन उद्योग को सुविधा प्रदान करेगा। उपर्युक्त 14 जून की कार्यशाला का उद्देश्य राष्ट्रीय पवन ऊर्जा संस्थान के माध्यम से नवीन और नवीकरणीय ऊर्जा मंत्रालय के समर्थन के साथ, अकादिमक और उद्योग की माध्यम से राष्ट्रीय महत्व के अनुसंधान के लिए उठाए जा रहे उद्योग की पहचान की आवश्यकताओं को पूरा करना भी है।

राष्ट्रीय पवन ऊर्जा संस्थान की अनुसंधान एवं विकास परिषद के अध्यक्ष और सलाहकार, मैसर्स पोसको के पूर्व सीईओ श्री एस.के सूनी; विज्ञान और प्रौद्योगिकी विभाग के सलाहकार डॉ. संजय बाजपेयी; राष्ट्रीय पवन ऊर्जा संस्थान के महानिदेशक डॉ. के. बलरामन; उद्योग विशेषज्ञ और राष्ट्रीय पवन ऊर्जा संस्थान के पूर्व महानिदेशक, डॉ. एस. गोमतिनायगम के द्वारा उद्योग जगत, आईडब्ल्यूटीएमए, आईडब्ल्यूपीए, डब्ल्यूआईपीपीए और आईआईटी, एनआईटी एवं भारत के प्रमुख विश्वविद्यालयों और अन्य शिक्षाविदों की सम्मेलन कक्ष में उपस्थित के समक्ष पारंपरिक दीपक प्रज्ञवलित करते हुए उपर्युक्त कार्यशाला का उद्घाटन किया गया।

उपर्युक्त प्रथम कार्यशाला में उपस्थित उद्योग जगत से उपस्थित और शिक्षाविदों के द्वारा प्रस्तुत विचारों के परिणामस्वरूप यह सफल कार्यशाला रही क्योंकि इसमें संवाद समूहों और लक्ष्य समूहों के मध्य विचारों और अनुभवों के खुले आदान-प्रदान को अमूल्य मंच प्रदान किया गया। कार्यशाला में कुछ प्रमुख विषयों पर ध्यान केंद्रित किया गया है, जो भारतीय पवन ऊर्जा उद्योग और शिक्षा से प्रौद्योगिकी परिपक्वता स्तर (टीआरएल) विचार विमर्श के लिए उन्मुख अनुसंधान और विकास के लिए तत्काल आवश्यकताओं के संदर्भ में विचार, मनन – मंथन भी करता है। कार्यशाला के अंतर्गत भारत में वर्तमान में उपलब्ध तकनीकी, वित्तीय और नीतिगत समाधानों का व्यापक अवलोकन किया गया और उद्योग की अनुसंधान एवं विकास आवश्यकताओं को पूरा करने के लिए समाधान खोजने के लिए विचार-विमर्श किया गया।

कार्यशाला में भारतीय पवन ऊर्जा क्षेत्र, शिक्षाविदों, अनुसंधान संस्थानों और भारतीय पवन ऊर्जा संगठनों की 100 से अधिक प्रतिभागियों की उपस्थिति थी। जिसमें उद्योग जगत के मैसर्स वेस्टस, मैसर्स सुजलॉन, मैसर्स सीमेंस- गमेशा, मैसर्स आरआरबी एनर्जी, मैसर्स री जेन पॉवरटेक, मैसर्स लेट्विंड श्रीराम, मैसर्स शिवा विंड टरबाइन, मैसर्स रिन्यू विद्युत, मैसर्स माइट्रह एनर्जी, मैसर्स एनरफ़ा प्रोजेक्ट्स (भारत), मैसर्स सीमेंस (विनर्जी) आदि उद्योग जगत के पेशेवरों के द्वारा कार्यशाला में भाग लिया और अपनी अनुसंधान एवं विकास संबंधी आवश्यकताओं पर भी प्रकाश डाला गया। उपर्युक्त के अतिरिक्त, भारत पवन ऊर्जा क्षेत्र संगठनों के प्रमुख अर्थात् IWTMA, IWPA और WIPPA के प्रतिनिधियों ने भी कार्यशाला में भाग लिया और अपने बहुमूल्य विचारों से मंच साझा किया। अकादमी से, भारतीय विज्ञान संस्थान (आईआईएससी), आईआईटी, एनआईटी, एनएएल (नेशनल एरोनॉटिकल लेबोरेटरी, बैंगलोर) और देश भर में फैले अन्य प्रमुख विश्वविद्यालयों जैसे प्रीमियम संस्थानों के प्रोफेसरों / शोधकर्ताओं के द्वारा कार्यशाला में भाग लिया और विविध विधाओं पर विचार-विमर्श किया गया। कार्यशाला में उद्योग के पेशेवरों और अकादिमक / अनुसंधान संस्थानों के मध्य काफी जीवंत चर्चा हुई।

उद्योग प्रतिनिधियों और अकादिमिक शोधकर्ता और प्रोफेसरों के द्वारा दी गई संक्षिप्त प्रस्तुतियों ने चर्चा के लिए विस्तृत मंच प्रदान किया। अधिकांश उद्योग प्रतिनिधि विभिन्न संस्थानों द्वारा किए जा रहे शोध कार्यों से प्रसन्न और प्रोत्साहित भी हुए। भारतीय पवन ऊर्जा उद्योग के प्रतिनिधियों और शिक्षाविदों ने राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई द्वारा की गई इस नई पहल का हिस्सा बनने के लिए काफी उत्साह और प्रसन्नता व्यक्त की और राष्ट्रीय पवन ऊर्जा संस्थान के इस प्रयास को देश और उसके मेक इन इंडिया गतिविधियों को सफल बनाने के लिए अपनी निरंतर भागीदारी का आश्वासन दिया।

कार्यशाला के परिणाम के रूप में लिए गए कुछ प्रमुख निर्णय निम्नलिखित थे

- विभिन्न स्थानों पर नियमित रूप से उद्योग जगत और शिक्षाविदों दोनों की सहभागिता के साथ " पूर्ण भारत – अनुसंधान नेटवर्क बैठक " आयोजित करना।
- 2) उद्योग जगत की समस्याओं के समाधान के लिए शोधकर्ताओं / शिक्षाविदों के मध्य विशेषज्ञता-वार / रुचि के क्षेत्र में कार्य करने वाले समूहों के गठन का प्रस्ताव।
- 3) शिक्षाविदों / शोधकर्ताओं के द्वारा अनुसंधान और विकास की गतिविधियों को प्रौद्योगिकी प्रणाली के विकास के साथ मुख्य रूप से जोड़ना चाहिए जो कि भारतीय पवन ऊर्जा उद्योग को अनुकूलित और कार्यान्वित करने में सुविधा प्रदान करेगा।
- 4) राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई के द्वारा पवन ऊर्जा उद्योग जगत की सभी समस्याओं को समेकित और सूचीबद्ध करने की आवश्यकता है। तदनुसार, अकादिमक / शोधकर्ताओं के द्वारा समस्याओं के समाधान के अनुरूप परियोजना प्रस्ताव तैयार किए जा सकते हैं और उन्हें संबंधित उद्योग / निर्माताओं को उचित कार्यवाही हेतु प्रेषित किया जा सकता है।

- 5) (क) भारतीय पवन ऊर्जा / विद्युत संघ के द्वारा उद्योग-अकादमिक सहयोगी परियोजनाओं को पूरा करने के लिए कुछ धन आवंटित करने के विषय में विचार किया जा सकता है।
 - (ख) राष्ट्रीय पवन ऊर्जा संस्थान के लिए एक स्मार्ट माइक्रो ग्रिड विकसित करने के लिए कहा गया और एकक के इस प्रस्ताव को अनुसंधान परिषद और प्रबंध परिषद में प्रस्तुत किया गया था जिसे अनुमोदन प्रदान किया गया और परियोजना को क्रियान्वित करने और 'राष्ट्रीय पवन ऊर्जा संस्थान परिसर को हरित ऊर्जा भवन' में परिवर्तित करने के लिए उचित बजट आवंटित किया गया है।
 - (ग) कायथर स्थित पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में नवीकरणीय ऊर्जा प्रदर्शन प्रयोगशाला में अभिकल्प और घटक परीक्षण के लिए एक लघु पवन ऊर्जा टरबाइन हब सुविधा के निर्माण हेतु अनुमोदन प्रदान किया गया है और इस परियोजना से निष्पादित होने वाले लघु पवन ऊर्जा टरबाइन पर एक अंतर्राष्ट्रीय सम्मेलन माह दिसंबर 2018 में आयोजित करने का निर्णय लिया गया।
 - (घ) लगभग 60 स्नातक और स्नातकोत्तर विद्यार्थियों के द्वारा विभिन्न विषय विशेषज्ञों के दारा सुझाए गए पवन ऊर्जा और सौर ऊर्जा की विभिन्न विधाओं में, राष्ट्रीय पवन ऊर्जा संस्थान, अपनी विद्यार्थी इंटर्नशिप पूर्ण की गई।

प्रकाशन

राष्ट्रीय पवन ऊर्जा संस्थान के उपर्युक्त एकक के द्वारा ऊर्जा भंडारण परीक्षण विषय में (क) राष्ट्रीय ऊर्जा भंडारण मिशन आलेख के प्रारूपण में योगदान दिया गया, और (ख) भारतीय पवन ऊर्जा टरबाइन प्रमाणन योजना। उपर्युक्त आलेख के प्रारूप को पुनः तैयार किए जाएगा इसके लिए विभिन्न्न हितधारकों के द्वारा प्रारूप का पुनरीक्षण और सत्यापित किए जाने की आवश्यकता है।

सूचना, प्रशिक्षण एवं अनुकूलित सेवाएं

प्रशिक्षण पाठ्यक्रम

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा कैलेंडर वर्ष 2018-19 की अवधि में निम्नलिखित अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम निर्धारित किए जाएंगे; और पाठ्यक्रमों के सफल संचालन के लिए आवश्यक प्रक्रिया कार्य प्रगति पर हैं।

आगामी अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम

क्र.सं.	विवरण	दिनांक से	दिनांक तक	दिन
1.	22 वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम -			
	विषय : पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग	18.07.2018	17.08.2018	31 दिन
2.	विशेष अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम - विषय : पवन ऊर्जा संसाधन			
	निर्धारण और पवन ऊर्जा टरबाइन क्षेत्र योजना	19.09.2018	12.10.2018	24 दिन
3.	विशेष अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम - विषय : अभिकल्प, संस्थापना और			
	रखरखाव लघु पवन ऊर्जा टरबाइन	14.11.2018	14.12.2018	31 दिन
4.	23 वाँ अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम -			
	विषय : पवन ऊर्जा टरबाइन प्रौद्योगिकी और अनुप्रयोग	30.01.2019	01.03.2019	31 दिन

उपर्युक्त पुष्टि किए गए प्रशिक्षण पाठ्यक्रमों और स्व वित्तपोषित प्रशिक्षण पाठ्यक्रमों के अतिरिक्त विदेश मंत्रालय को निम्नवत प्रस्ताव प्रेषित किए गए हैं:

दिनांक 15 नवंबर से 13 दिसंबर 2018 की अवधि में निर्धारित AIFS योजना के अंतर्गत अफ्रीकी देशों के लिए विशेष रूप से "लघु पवन ऊर्जा टरबाइन के अभिकल्प, संस्थापना और रखरखाव" विषय पर अंतर्राष्ट्रीय प्रशिक्षण पाठ्यक्रम आयोजित करने का निर्णय लिया गया है।

23वां राष्ट्रीय प्रशिक्षण पाठ्यक्रम "पवन ऊर्जा प्रौद्योगिकी "विषय पर माह अक्टूबर 2018 में आयोजित करने का निर्णय लिया गया है; और, 24वां राष्ट्रीय प्रशिक्षण पाठ्यक्रम "पवन ऊर्जा प्रौद्योगिकी"विषय पर माह मार्च 2019 में आयोजित करने का निर्णय लिया गया है।

फरवरी - मार्च 2019 की अवधि में निर्धारित राज्य नोडल एगेंसियों के अधिकारियों के लिए "पवन ऊर्जा और सौर ऊर्जा संसाधन आकलन प्रौद्योगिकी" विषय पर विशेष प्रशिक्षण पाठ्यक्रम आयोजित करने का निर्णय लिया गया है।

विद्यार्थी अध्ययन सेवा (इंटर्नशिप) / परियोजना कार्य

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा विद्यार्थी अध्ययन सेवा (इंटर्निशिप):

दिनांक 1 जून 2018 से 25 जून 2018 की अवधि में मैसर्स यरूशलेम कॉलेज ऑफ इंजीनियरिंग के स्नात्कोत्तर- विद्युत इल्क्ट्रोनिक्स अभियांत्रिकी विषय के
 11 विद्यार्थियों के द्वारा 'इकोसेंस प्रणाली 'पर विद्यार्थी अध्ययन सेवा (इंटर्नशिप) कार्य पूर्ण किया गया।

- दिनांक 18 जून 2018 से 28 जून 2018 की अवधि में असम राज्य के मैसर्स तेजपुर विश्वविद्यालय से 'मापन और विश्लेषण पर इकोसेंस प्रणाली' पर बी.वोक (नवीकरणीय ऊर्जा प्रबंधन) के 8 विद्यार्थियों के द्वारा विद्यार्थी अध्ययन सेवा (इंटर्नशिप) कार्य पूर्ण किया गया।
- दिनांक 7 जून 2018 से 22 जून 2018 की अवधि में चेन्नई के मैसर्स जेपियर इंजीनियरिंग कॉलेज से 'इकोसेंस प्रणाली' पर 2 विद्यार्थियों के द्वारा विद्यार्थी अध्ययन सेवा (इंटर्नशिप) कार्य पूर्ण किया गया।
- दिनांक 15 जून 2018 से 29 जून 2018 की अवधि में आगरा के मैसर्स दयालबाग एजुकेशनल इंस्टीट्यूट (डीम्ड यूनिवर्सिटी) से 'इकोसेंस प्रणाली' पर 3 विद्यार्थियों के द्वारा विद्यार्थी अध्ययन सेवा (इंटर्नशिप) कार्य पूर्ण किया गया।

आगंतुक अध्ययन – भ्रमण

राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा विद्यालय और महाविद्यालय के विद्यार्थियों को पवन ऊर्जा पर अनुसंधान के क्षेत्र में प्रेरित करने, जागरूकता उत्पन्न करने, स्वदेशीकरण प्राप्त करने और राष्ट्रीय पवन ऊर्जा संस्थान की गतिविधियों और सेवाओं के बारे में प्रोत्साहित करने के उद्देश्य से परिसर में अध्ययन भ्रमण करने हेतु प्रेरित किया जाता है। अप्रैल से जून 2018 की अविध में राष्ट्रीय पवन ऊर्जा संस्थान- परिसर में निम्नलिखित अध्ययन भ्रमण का समन्वय कार्य किया गया और राष्ट्रीय पवन ऊर्जा संस्थान की सुविधाओं को प्रदर्शित किया गया और समझाया गया था।

दिनांक 19 अप्रैल 2018 को चेन्नई के मैसर्स सेंट जॉन सीनियर सेकेंडरी स्कूल से नवम कक्षा के 150 विद्यार्थियों के द्वारा अध्ययन भ्रमण किया गया।

वैश्विक पवन ऊर्जा दिवस समारोह 2018

वैश्विक पवन ऊर्जा दिवस एक विश्वव्यापी कार्यक्रम है जो प्रति वर्ष 15 जून को मनाया जाता है और राष्ट्रीय पवन ऊर्जा संस्थान देश में पवन ऊर्जा के विकास के लिए तकनीकी केंद्र बिंदु है; वर्ष 2009 से प्रति वर्ष 15 जून को वैश्विक पवन ऊर्जा दिवस एक समारोह के रूप मनाता है, इस वर्ष 14 जून 2018 को, वैश्विक पवन ऊर्जा दिवस समारोह के अवसर पर, राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा राष्ट्रीय पवन ऊर्जा संस्थान चेन्नई में ' पैन इंडिया रिसर्च नेटवर्क- इंडिस्ट्रियल एंड एकेडिमिक अमलगमेशन' विषय पर एक दिवसीय कार्यशाला का आयोजन किया गया। राष्ट्रीय पवन ऊर्जा संस्थान के अनुसंधान और विकास परिषद के अध्यक्ष और सदस्यों के संबोधन के बाद सदस्यों के समक्ष उपर्युक्त वैश्विक पवन ऊर्जा दिवस समारोह की एक संक्षिप्त पृष्ठभूमि प्रस्तुत की गई। अनुसंधान एवं विकास गतिविधियाँ और उद्योग, अकादिमया, अनुसंधान संस्थानों की अपेक्षाएँ, विशेष रूप से पवन ऊर्जा क्षेत्रों पर प्रस्तुत की गईं। और, एक खुला चर्चा मंच, उद्योग, शिक्षा और अनुसंधान संस्थानों के पारस्परिक विचार-विमर्श हेतु आयोजित किया गया।

भर्ती

श्री एहिरभास्करन को वैज्ञानिक-सी (उप निदेशक - तकनीकी) के रूप में नियुक्त किया गया और दिनांक 01.06.2018 से राष्ट्रीय पवन ऊर्जा संस्थान के अनुसंधान और विकास एकक में तैनात किया गया।

पवन ऊर्जा टरबाइन अनुसंधान स्टेशन

त्वरा गति पवन ऊर्जा मौसम - 2018 के लिए पवन ऊर्जा टरबाइनों के निर्बाध संचालन के लिए 30 वर्ष पुराने, मॉइकन के 200 किलोवॉट, सुज़लॉन का एक 600 किलोवॉट का, केन्येरस्य्स का एक 2000 किलोवॉट का और ऑइनॉक्स का एक 2000 किलोवॉट का पवन ऊर्जा शामिल हैं। कायथर में पवन ऊर्जा टरबाइन अनुसंधान स्टेशन में 6.4 मेगावॉट क्षमता के पवन ऊर्जा इलेक्ट्रिक जेनरेटर संस्थापित किए गए। कायथर स्थित 'पवन ऊर्जा टरबाइन अनुसंधान स्टेशन ' में, पूर्ण निवारक संचालन और अनुरक्षण गतिविधियाँ जैसे ट्रांसफार्मर यार्ड की तैयारी, कंट्रोल पैनल्स की कंडीशनिंग, पैनल्स. सभी सेंसरों की कार्यात्मकता की जाँच, ट्रांसमिशन लाइनों और ट्रांसफ़ॉर्मरों की कंडीशर्निंग आदि कार्य किए गए।

सौर ऊर्जा विकिरण संसाधन निर्धारण

परियोजना की गतिविधियाँ

- दिनांक 4 अप्रैल 2018 को डॉ. जी. गिरिधर के द्वारा त्रिची स्थित भारतीय प्रबंधंन संस्थान के अधिकारियों के साथ भारतीय प्रबंधंन संस्थान, त्रिची में 2 मेगावॉट के सौर ऊर्जा संयंत्र की स्थापना के संबंध में नई दिल्ली स्थित क्षेत्रीय अभियांत्रिकी महाविद्यालय के अधिकारियों के साथ बैठक की गई।
- सौर ऊर्जा विकिरण संसाधन निर्धारण एकक की परियोजना के अंतर्गत 5 पॉयरानोमीटर का अंशांकन कार्य किया गया।
- दिनांक 11 अप्रैल 2018 से 15 अप्रैल 2018 की अवधि में केरल राज्य के रामककलमेडु में पवन ऊर्जा सौर ऊर्जा वर्ण संकर संयंत्र की संस्थापना विषय पर दो परियोजना सहायकों के द्वारा ANERT के अधिकारियों के साथ सत्यापन अध्ययन किया गया।
- दिनांक 20 अप्रैल 2018 से 22 अप्रैल 2018 की अवधि में विस्तृत परियोजना रिपोर्ट तैयार करने के संदर्भ में त्रिची स्थित भारतीय प्रबंधंन संस्थान का भ्रमण किया गया।
- दिनांक 25 अप्रैल 2018 से 26 अप्रैल 2018 की अवधि में डॉ. जी. गिरिधर के द्वारा नई दिल्ली के अंतरिक्ष विहार में भावी भूमंडल अवलोकन सुदुर प्रणाली विषय पर आयोजित विशेषज्ञ समिति की बैठक में भाग लिया गया।
- सौर ऊर्जा विकिरण संसाधन निर्धारण पूर्वानुमान समूह के अधिकारियों के द्वारा पुणे स्थित भारतीय प्रौद्योगिकी प्रबंधन संस्थान के अधिकारियों के साथ में
 एक दिवसीय मनन-मंथन बैठक में भाग लिया गया।
- दिनांक 6 मई 2018 से 15 मई 2018 की अविध में डॉ. जी. गिरिधर के द्वारा गंगटोक में स्थायी संसदीय सिमिति ऊर्जा की बैठक में भाग लिया गया और राज्य भार प्रेषण केंद्र बैग़लुरू के अधिकारियों के साथ बैठक में भाग लिया गया।
- सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशन गांधी नगर के स्थानांतरण के संदर्भ में श्री आर. कार्तिक के द्वारा अहमदाबाद का भ्रमण किया गया।
- दिनांक 1 जून 2018 को केरल राज्य के (ANERT) में 2 सौर ऊर्जा विकिरण संसाधन निर्धारण स्टेशनों की संस्थापना के लिए प्राप्त की गई तकनीकी और वित्तीय बोलियों के लिए आयोजित STC की बैठक में भाग लिया गया।
- दिनांक 4 जून 2018 से 5 जून 2018 की अवधि में डॉ. जी. गिरिधर और श्री आर. कार्तिक के द्वारा मोबॉइल-एप के विमोचन के अवसर पर नवीन और नवीकरणीय ऊर्जा मंत्रालय के अधिकारियों के साथ आयोजित बैठक में भाग लिया गया।
- िदिनांक 9 जून 2018 को डॉ. जी. गिरिधर और श्री प्रसून कुमार दास के द्वारा कोयंबटूर स्थित मैसर्स कुमारगुरु कॉलेज ऑफ़ टेक्नोलॉजी में डबल एक्सिस सोलर ट्रैकिंग सुविधा का निरीक्षण किया गया।

नवीकरणीय ऊर्जा संसाधनों का अधिकतम उपयोग करने और पवन ऊर्जा

विद्युत उत्पादन की तीव्रता और निकासी में संवृद्धि करने हेतु वर्ष 2013 में,

भारत सरकार के नवीन और नवीकरणीय ऊर्जा मंत्रालय के सहयोग से मैसर्स

वोर्टेक्स स्पेन के साथ मिलकर, भारतीय-स्पेनिश अनुसंधान के सहयोग एवं

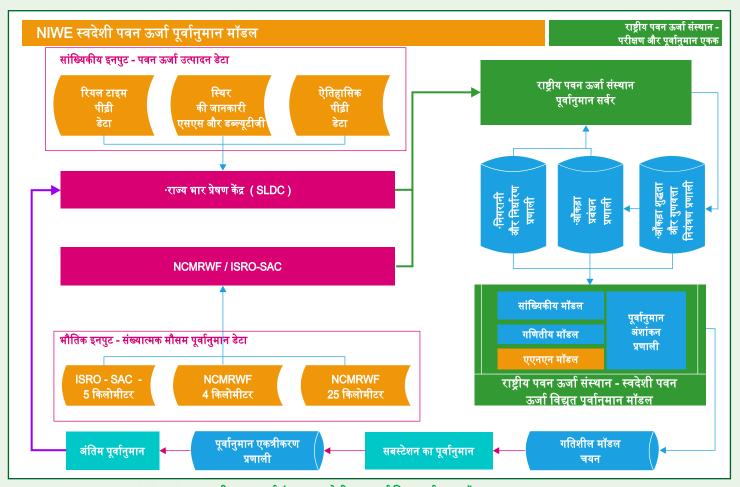
राष्ट्रीय पवन ऊर्जा संस्थान का स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल – एक अवलोकन

श्री एस. ए. मैथ्यु, निदेशक एवं समूह प्रमुख, परीक्षण एवं पूर्वानुमान एकक, राष्ट्रीय पवन ऊर्जा संस्थान; ई मेल: mathew.niwe@nic.in श्री ए. जी. रंगराज, उप निदेशक (तकनीकी), परीक्षण एवं पूर्वानुमान एकक, राष्ट्रीय पवन ऊर्जा संस्थान; ई मेल: rangaraj.niwe@nic.in

पृष्ठभूमि

51 मेगावॉट के पवन ऊर्जा पूर्वानुमान परियोजना के एक प्रदर्शन मॉडल से इसका शुभारंभ किया गया। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा, भारत सरकार के नवीन और नवीकरणीय ऊर्जा मंत्रालय की उपस्थिति में दिनांक 13 मई 2015 को, पवन ऊर्जा पूर्वानुमान सेवाओं का व्यावसायिक रूप से विमोचन किया गया। भारतीय पवन ऊर्जा संगठन (IWPA) के द्वारा राष्ट्रीय पवन ऊर्जा संस्थान से अनुरोध किया गया था कि, CERC के तत्कालीन प्रचलित मानदंडों के अनुसार, पूर्ण तमिलनाडु राज्य के लिए पवन ऊर्जा पूर्वानुमान की सुविधाएं उपलब्ध करवाएं। फलतः सितंबर 2015 से निरंतर पवन ऊर्जा पूर्वानुमान की सेवाएं तमिलनाडु राज्य के राज्य भार प्रेषण केंद्र को प्रदान की जा रही हैं और तमिलनाडु क्षेत्र में पवन ऊर्जा उत्पादन में उतार-चढ़ाव के बेहतर प्रबंधन के लिए तमिलनाडु राज्य के स्वामित्व वाली विद्युत उत्पादन और वितरण उपयोगिता, TANGEDCO की सेवाएं प्रदान की जा रही हैं। भारतीय पवन ऊर्जा संगठन (IWPA) के द्वारा प्रदान की गई जानकारी के अनुसार वर्तमान में तमिलनाडु राज्य में 116 स्थानों में 7907 मेगावॉट की कुल मूल्यांकित क्षमता वाले लगभग 12,884 पवन ऊर्जा टरबाइन प्रचालन में हैं। उपर्युक्त के अतिरिक्त, ये उपस्टेशन मुख्य रूप से, थेनी, तिरुनेलवेली, कन्याकुमारी और कोयम्बटूर, 4 क्षेत्रों में स्थित हैं। पवन ऊर्जा विद्युत पूर्वानुमान सेवा के द्वारा मैसर्स TANGEDCO के ग्रिड प्रबंधन की गतिविधियों, जैसे कि ताप विद्युत संयंत्रों की इकाइयों के संतुलन, रखरखाव और शेड्यूलिंग के आवंटन आदि में एक महत्वपूर्ण भूमिका है। दूसरी ओर, राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा एक स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल विकसित किया गया है यह स्वदेशी मॉडल मैसर्स राष्ट्रीय मध्यम दूरी मौसम अनुसंधान पूर्वानुमान केंद्र (NCMRWF) और मैसर्स ISRO – अंतरिक्ष अनुप्रयोग केंद्र (ISRO-SAC) के द्वारा उच्च - रिज़ॉल्यूशन सांख्यिकी मौसम पूर्वानुमान (NWP) मॉडल से प्राप्त आँकड़ों की सहायता से तैयार किया गया है। मैसर्स NCMRWF, मैसर्स ISRO-SAC और राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा संयुक्त रूप से विभिन्न विधाओं के अंतर्गत संख्यात्मक मौसम पूर्वानुमान मॉडल को श्रेष्ठतर बनाने के लिए कार्य किया जा रहा है। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा मैसर्स NCMRWF से 25 किलोमीटर आँकड़े (वैश्विक मॉडल) और 4 किलोमीटर आँकड़े (क्षेत्रीय मॉडल) क्षैतिज रिज़ॉल्यूशन NWP से 50 मीटर ऑकड़े , 10 मीटर और 3 मीटर भू-स्थानिक ऊँचाई के आँकड़े मैसर्स NCMRWF से प्राप्त किए जा रहे हैं। मैसर्स NCMRWF 7 दिन आगे तक प्रति घंटा की पवन की गति का

पूर्वानुमान प्रदान कर रहा है। इसके अतिरिक्त, राष्ट्रीय पवन ऊर्जा संस्थान को तमिलनाडु राज्य में पवन ऊर्जा टरबाइन से जुड़े सबस्टेशनों के लिए 5 किलोमीटर (क्षेत्रीय मॉडल) क्षैतिज रिज़ॉल्यूशन NWP आँकड़े भी मैसर्स ISRO-SAC से प्राप्त किए जा रहे हैं। मैसर्स ISRO-SAC 15 मिनट पवन गति का पूर्वानुमान 72 घंटे पूर्व ही प्रदान कर रहा है। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा विभिन्न स्रोतों से संख्यात्मक मौसम पूर्वानुमान आँकड़े और वास्तविक विद्युत उत्पादन के आँकड़ों को संभालने के लिए एक प्रणाली बनाई गई है और मैसर्स NCMRWF / ISRO-SAC संख्यात्मक मौसम पूर्वानुमान आँकड़ों का उपयोग करते हुए पवन ऊर्जा का अनुमान लगाने के लिए एक वर्ण संकर भौतिक और सांख्यिकीय मॉडल विकसित किया गया है। उपर्युक्त मॉडल का उपयोग करते हुए राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा देश में 7 दिन पहले तक पवन ऊर्जा का पूर्वानुमान करने के लिए एक प्रणाली संस्थापित की गई है जिससे कि देश के सभी राज्य भार प्रेषण केंद्रों (SLDC) को पवन ऊर्जा विद्युत उत्पादन की निकासी / बिना किसी बाह्य पूर्वानुमान आँकड़ा प्रदाता से ग्रिड प्रबंधन करने में सहायता मिल सके। वर्तमान में, उपर्युक्त स्वदेशी मॉडल के परीक्षण और सत्यापन का कार्य प्रगति पर है। उपर्युक्त मॉडल को, उस राज्य विशेष के ऐतिहासिक आँकड़ों की उपयुक्त फाइन-ट्यूनिंग के बाद, देश के सभी राज्य भार प्रेषण केंद्रों (SLDC) को वर्ष 2019 तक उपलब्ध करवाया जाएगा। वर्तमान में, राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा निम्नलिखित उद्देश्य के साथ राष्ट्रीय पवन ऊर्जा संस्थान, चेन्नई में नवीकरणीय ऊर्जा पूर्वानुमान उत्कृष्टता केंद्र की संस्थापना की प्रक्रिया का कार्य प्रगति पर है।


- 7 राज्यों अर्थात, आंध्र प्रदेश, गुजरात, कर्नाटक, मध्य प्रदेश, महाराष्ट्र, राजस्थान और तेलंगाना राज्यों, में पवन ऊर्जा विद्युत पूर्वानुमान सेवाओं का शुभारम्भ करना।
- पवन ऊर्जा पूर्वानुमान पद्धित के माध्यम से अधिकतम पवन ऊर्जा ले लेना।
- पूर्वानुमान सेवाओं की उपयोगिताओं के लिए अवसंरचना विकास और क्षमता निर्माण करना।
- राष्ट्रीय पवन ऊर्जा संस्थान के वास्तविक समय पवन ऊर्जा टरबाइन प्रचालन विस्तार को एकत्रित करने के लिए राष्ट्रीय आँकड़ा अधिग्रहण प्रणाली की स्थापना करना।

इस शोध लेख में राष्ट्रीय पवन ऊर्जा संस्थान के स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल (1 दिन पूर्व से 7 दिन पूर्व तक) के संस्करण 1.0 का विस्तृत रूप से विवरण दिया जा रहा है।

राष्ट्रीय पवन ऊर्जा संस्थान के स्वदेशी पवन ऊर्जा विद्युत पूर्वानुमान मॉडल की संरचना:

राष्ट्रीय पवन ऊर्जा संस्थान के स्वदेशी पवन ऊर्जा विद्युत पूर्वानुमान मॉडल की समग्र संरचना चित्र 1 में दर्शाई गई है।

राष्ट्रीय पवन ऊर्जा संस्थान - स्वदेशी पवन ऊर्जा विद्युत पूर्वानुमान मॉडल का स्वरूप

सांख्यिकीय इनपुट

पवन ऊर्जा विद्युत उत्पादन - ऐतिहासिक आंकड़े

पवन ऊर्जा विद्युत उत्पादन के ऐतिहासिक आँकड़ों का उपयोग प्रत्येक पवन ऊर्जा टरबाइन क्षेत्र / पवन ऊर्जा पूलिंग सबस्टेशन के विद्युत उत्पादन के तत्काल अतीत के स्वरूप को समझने के लिए किया जाएगा। यह राष्टीय पवन ऊर्जा संस्थान के स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल को आरंभ करने के लिए महत्वपूर्ण जानकारियों में से एक है। विशिष्ट पवन ऊर्जा पूलिंग सबस्टेशन / पवन ऊर्जा टरबाइन क्षेत्र स्काडा प्रणाली के पूर्व रिकॉर्ड से विद्युत उत्पादन के ऐतिहासिक आँकड़े प्राप्त किए जाएंगे। नए सबस्टेशनों के लिए या जिस स्टेशन के उचित विद्युत उत्पादन के ऐतिहासिक आँकड़े उपलब्ध नहीं हैं, उस पवन ऊर्जा पूर्वानुमान मॉडल को शुरू करने के लिए राष्ट्रीय पवन ऊर्जा संस्थान अपनी विद्युत वक्र जानकारी के साथ पवन ऊर्जा टरबाइन विद्युत उत्पादन, पवन ऊर्जा टरबाइन उत्पादन विवरण का समन्वय करते हुए उपयोग करेगा। राष्ट्रीय पवन ऊर्जा संस्थान के उपर्युक्त मॉडल को 15 मिनट के अंतराल के अस्थायी समाधान के साथ एक वर्ष के विद्युत उत्पादन के सटीक ऐतिहासिक आँकड़ों की आवश्यकता होती है। पवन ऊर्जा विद्युत पूर्वानुमान की सटीकता मुख्य रूप से विद्युत उत्पादन के आंकड़ों की ऐतिहासिक सटीकता पर निर्भर करती है। अतः पवन ऊर्जा पूर्वानुमान परियोजना में सटीक विद्युत उत्पादन आँकड़े महत्वपूर्ण भूमिका निभाएंगे।

वास्तविक समय आँकड़े

वास्तविक समय पवन ऊर्जा विद्युत उत्पादन आँकड़ों का उपयोग वर्तमान अवलोकन के साथ पवन ऊर्जा विद्युत उत्पादन को जांचने के लिए किया जाएगा और इन पवन ऊर्जा विद्युत उत्पादन आँकड़ों का उपयोग एक दिवसीय पूर्वानुमान मॉडल में किया जाएगा। उपर्युक्त पवन ऊर्जा विद्युत उत्पादन आँकड़ों का उपयोग राष्ट्रीय पवन ऊर्जा संस्थान के स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल को जांचने के लिए महत्वपूर्ण जानकारियों में से एक है। उपर्युक्त आँकड़े पवन ऊर्जा टरबाइन पूलिंग सबस्टेशन में पवन ऊर्जा टरबाइन क्षेत्र / सुदुर टर्मिनल एकक (आरटीयू) के माध्यम से संस्थापित ABT (उपलब्धता बेस टैरिफ मीटर) / SCADA प्रणाली से प्राप्त किए जाएंगे। उपर्युक्त महत्वपूर्ण पैरामीटर औसत सक्रिय विद्युत होगी जिनका पवन ऊर्जा विद्युत पूलिंग सबस्टेशन / पवन ऊर्जा टरबाइन क्षेत्र और अतिरिक्त उत्पादन आँकड़ों. मापदंडों के रूप में उपयोग होता है। पवन ऊर्जा टरबाइन क्षेत्र औसत पवन की गति, पवन की दिशा, पवन ऊर्जा टरबाइन / फीडर की स्थिति आदि पवन ऊर्जा विद्युत पूर्वानुमान परिणामों को परिष्कृत करने में सहायक होगा। वर्तमान में, तमिलनाडु राज्य में, मैसर्स REMC को 3-मिनट के अंतराल के साथ 116 पवन ऊर्जा टरबाइन क्षेत्र, पवन ऊर्जा टरबाइन क्षेत्र से जुड़े सबस्टेशनों को फीडर वार उत्पादन आँकड़े उपलब्ध करवाए जा रहे हैं और मैसर्स TANGEDCO के द्वारा राष्ट्रीय पवन ऊर्जा संस्थान को उपर्युक्त आँकड़े

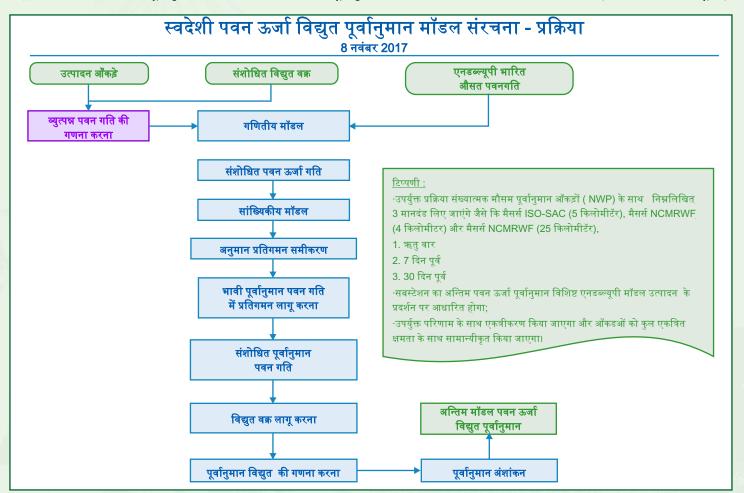
उपलब्ध करवाए जा रहे हैं। दूसरी ओर, मैसर्स GETCO के द्वारा 69 पवन ऊर्जा टरबाइनों से जुड़े पवन ऊर्जा पूलिंग सबस्टेशन में RTU तंत्र संस्थापित किया गया है और 1 मिनट के अंतराल के साथ प्रत्येक सबस्टेशन के विद्युत उत्पादन आँकड़े राष्ट्रीय पवन ऊर्जा संस्थान तक डाउनलोड करने के लिए उपलब्ध करवाए जा रहे हैं। राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा पवन ऊर्जा विद्युत उत्पादन आँकड़ों को एकत्रित करने, शुद्धता करने और संसाधित करने के लिए एक स्वचालन प्रणाली की संस्थापना की गई है और 15-मिनट के अंतराल के साथ मूल-आँकड़ा संग्रहण में आँकड़े संग्रहीत किए जा रहे हैं।

पूलिंग सबस्टेशन के स्थैतिक आँकड़े

सबस्टेशन का नाम, सबस्टेशन की क्षमता, फीडरों की संख्या, ट्रांसफार्मर का विवरण, सबस्टेशन का अक्षांश और देशांतर आदि जैसी स्थैतिक जानकारी, मैसर्स NCMRWF / ISRO-SAC से उचित मौसम संबंधी आँकड़ों का चयन करने के लिए आवश्यक हैं, सबस्टेशन का स्तर, विद्युत वक्र और पूर्वानुमान परिणामों को परिष्कृत करने के लिए भी जानकारी का उपयोग किया जा रहा है।

भौतिक जानकारी

वर्तमान में, राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा मैसर्स NCMRWF और मैसर्स ISRO-SAC के सांख्यिकी मौसम पूर्वानुमान (NWP) मॉडल आँकड़े (4 किलोमीटर, 5 किलोमीटर – क्षेत्रीय मॉडल और 25 किलोमीटर – वैश्विक मॉडल) के क्षैतिज रिज़ोल्यूशन के साथ प्राप्त किए जा रहे हैं। प्रमुख तकनीकी विवरण संक्षेप में निम्नवत प्रस्तुत किया जा रहा है:


क्र.सं.	संपत्ति का विवरण	ISRO-SAC (WRF मॉडल)	NCMRWF (क्षेत्रीय मॉडल)	NCMRWF (मेसोस्केल मॉडल)			
1	आरंभिक दशा वास्तविक आँकड़ों के लिए तीन आयामी, और एक, दो और तीन आयामी आदर्श आँकड़ों का उपयोग करके (इलाके / कई पर्वत-लहर परीक्षण मामले / नम गहरे संवहन / उथले वातावरण परीक्षण के मामले / नम गहरे संवहन-समाधान/ उथले वातावरण)		प्रारंभिक स्थितियां आमतौर पर उपलब्ध अवलोकनों के संख्यात्मक संश्लेषण द्वारा प्रदान की जाती हैं।	प्रारंभिक स्थितियां आमतौर पर उपलब्ध अवलोकनों के संख्यात्मक संश्लेषण द्वारा प्रदान की जाती हैं।			
2	समीकरणों का संचाल	नहाइड्रोस्टेटिक विकल्प के साथ नॉनहाइड्रोस्टैि	क समीकरणगैर-हाइड्रोस्टेटिक समीकरणगैर	-हाइड्रोस्टेटिक समीकरण			
3	स्थानिक रिज़ोल्यूशन	0.05° × 0.05°	0.25° × 0.25°	0.04° × 0.04°			
4	सीमा की स्थिति	शीर्ष सीमा की स्थिति: निरंतर दबाव स्तर पर गुरुत्वाकर्षण तरंग अवशोषित (फैलाना या रेले दबाना)। नीचे की सीमा की स्थिति भौतिक या निःशुल्क पर्ची पार्श्व सीमा की स्थिति आदर्शीकृत मामले: आवधिक, खुले पार्श्व विकिरण, और सममित वास्तविक मामले: छूट के साथ निर्दिष्ट	एनसीईपी-जीएफएस से सीमा की स्थिति	मैसर्स NCMRWF वैश्विक (T80L18) विश्लेषण और 6 घंटे के वैश्विक मॉडल पूर्वानुमान का उपयोग प्रारंभिक और पार्श्व सीमा स्थितियों के लिए किया जाता है			
5	सूक्ष्म-भौतिकी	केसलर योजना, लिन.एट.अल। योजना, एकल - पल 3 - श्रेणी योजना, डब्ल्यूआरएफ एकल - पल 5 - श्रेणी योजना, एटा सूक्ष्म- भौतिकी, डब्ल्यूआरएफ एकल - पल 6 - श्रेणी योजना, थॉम्पसन एट.अल. योजना	विल्सन और बैलार्ड (1999) पर आधारित अद्यनित मिश्रित- चरण योजना	विल्सन और बैलार्ड (1999) पर आधारित अद्यनित मिश्रित- चरण योजना			
6	PBL प्रक्रिया	YSU, MYJ, GFS, QNSE, MYNNx ACM2, BouLac, UW, TEMF, MRF	लॉक एट अल।, 2000 और मार्टिन एट अल।, 2000 पर आधारित।	JULES संशोधित PBL			
7	ग्रेविटी-वेव ड्रैग	GWDO (ग्रे-वेव ड्रग ड्रैग इन सब-ग्रिड स्केल ऑरोग्राफी) से प्रेरित है जो निम्न ट्रोपोस्फेरिक एन्हांसमेंट पर विचार कर रहा है (अर्थात, किम और अरकावा 1995 द्वारा सुझाया गया पैरामीटर)	ग्रेविटी-वेव ड्रैग को सिम्युलेटेड किया जाता है जैसा कि अल्परट एट.अल द्वारा वर्णित है। (1988)	ऑरोग्राफी ड्रैग एंड स्पेक्ट्रल ग्रेविटी वेव (वेबस्टर एट.अल, 2003) पर आधारित			
8	समय का एकीकरण	3-क्रम रुंगा -कुट्टा समय एकीकरण योजना	अर्ध-निहित समय कदम	अर्ध-निहित कदम			

क्र.सं.	संपत्ति का विवरण	ISRO-SAC (WRF मॉडल)	NCMRWF (क्षेत्रीय मॉडल)	NCMRWF (मेसोस्केल मॉडल)			
9	स्थानिक विवेक	अरकावा सी-ग्रिड	सरलीकृत-अरकावा योजना	परिमित अंतर विधि			
10	डाटा एसिमिलेशन	भिन्नता संबंधी आँकड़े आत्मसात (3 डी-वार और 4 डी-वार)	4- आयामी परिवर्तन विधि (4 डी-वार)	4- आयामी परिवर्तन विधि (4 डी-वार)			
11	विकिरण पैरामीटर	लॉन्गवेव - आरआरटीएम योजना, जीएफडीएल योजना, सीएएम योजना शॉर्टवेव - दुधिया योजना, गोडार्ड शॉर्टवेव, जीएफडीएल शॉर्टवेव, सीएएम योजना	लॉन्गवेव- रैपिड रेडियोएक्टिव ट्रांसफर मॉडल (RRTM) AER (Mlawer etse 1997) में विकसित किया गया। शॉर्टवेव - रेडीएटिव ट्रांसफर पैरामीटराइजेशन होऊ अल्परट एट.अल 2002 पर आधारित है।	स्पेक्ट्रल बैंड रेडिएशन (सामान्य 2 - धारा) प्रति एक घंटे में देखा जाता है (विकिरण			

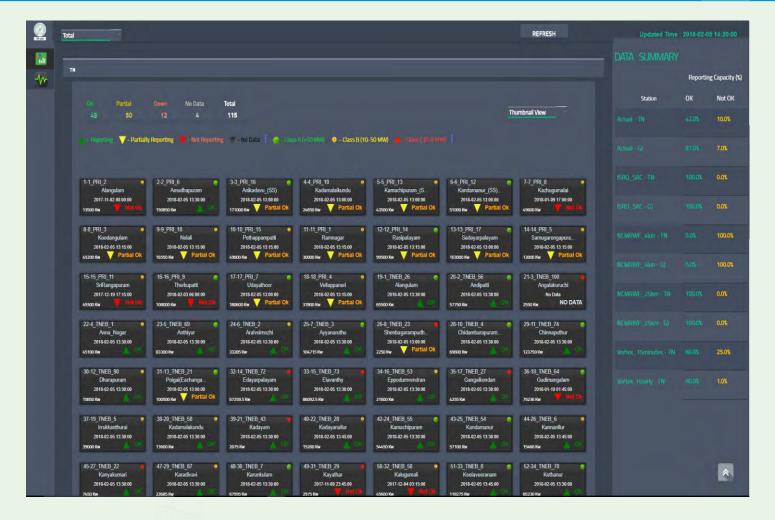
मॉडल प्रचालन

राष्ट्रीय पवन ऊर्जा संस्थान की पूर्वानुमान प्रणाली से संख्यात्मक मौसम पूर्वानुमान आँकड़े स्वचालित रूप से, मैसर्स ISRO-SAC (5 किलोमीटर रिज़ॉल्यूशन),

चित्रा 2 स्वदेशी पवन ऊर्जा पूर्वानुमान मॉडल का वर्कप्रलो

मैसर्स NCMRWF (4 किलोमीटर और 25 किलोमीटर रिज़ॉल्युशन), डाउनलोड होते हैं और जलवाय आँकड़ा प्रचालक (CDO) मॉडल का उपयोग करते हए अस्थाई अक्षेप अंतरवेषण किया जा रहा है। पूर्वानुमान प्रणाली 2 चरणों में, जैसे कि प्रथम प्रशिक्षण चरण में और द्वितीय प्रचालन चरण में, प्रगति कर रही हैं। प्रशिक्षण चरण के अवसर पर, राष्ट्रीय पवन ऊर्जा संस्थान एक वर्ष के विद्युत उत्पादन के ऐतिहासिक आँकड़ों के साथ संख्यात्मक मौसम पूर्वानुमान आँकड़ों की शद्धता और अंशांकन का कार्य प्रगति पर है। सांख्यिकीय और गणितीय मॉडल का उपयोग करते हए, राष्ट्रीय पवन ऊर्जा संस्थान विभिन्न सांख्यिकीय दृष्टिकोण के साथ उपयोग में लिए गए आँकड़ों के सह-संबंधों के लिए समीकरणों को संस्थापित किया जा रहा है और श्रेष्टतम संस्थापित होने वाले आँकड़ों की पहचान की जा रही है जो कि संख्यात्मक मौसम पूर्वानुमान आँकड़ों को सही करने के लिए प्रचालन चरण में उपयोग किया जा सकता है। प्रचालन चरण में, संख्यात्मक मौसम पूर्वानुमान आँकड़ों में आवश्यक संशोधन करने के बाद, विद्युत पूर्वानुमान का अनुमान एक विद्युत रूपांतरण एल्गोरिदम की सहायता से किया जाता है। उपर्युक्त प्रक्रिया 3 अलग - अलग संख्यात्मक मौसम पूर्वानुमान आँकड़ों के संसाधन की प्रक्रिया के साथ दोहराई जाएगी। सर्वश्रेष्ठ वास्तविक विद्युत उत्पादन के आँकड़े वाले मॉडल का प्रयोग प्रत्येक पूलिंग सबस्टेशन के लिए किया जाएगा। एकत्रीकरण प्रणाली का उपयोग एकत्रित पूर्वानुमान की गणना करने के लिए किया जाता है और पूर्वानुमान परिणाम निर्धारित समय पर संबंधित राज्य भार प्रेषण केंद्र (SLDC) को उपलब्ध करवाए जाएंगे। मॉडल की संरचना चित्र 3 में दर्शाई गई है।

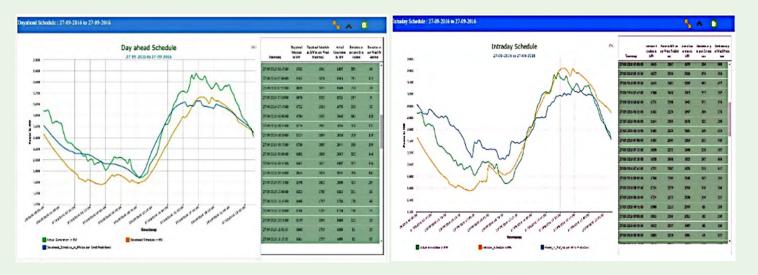
निगरानी प्रणाली


राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा विकसित निगरानी प्रणाली के विभिन्न आँकड़ों के माध्यम से वर्तमान अद्यतन निगरानी हेतु समूह के द्वारा सहायता प्रदान की जा रही है।

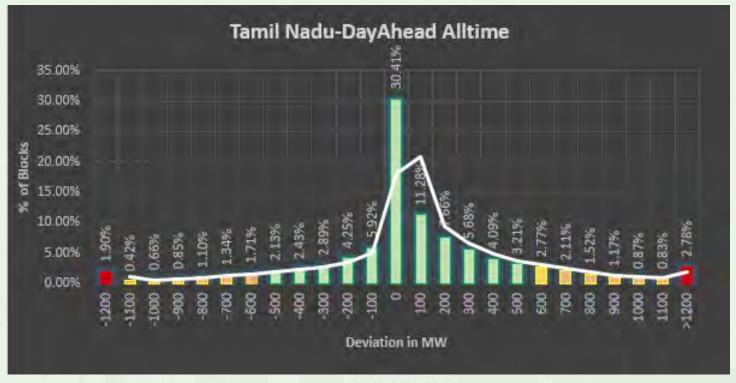
राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा एफटीपी, ई-मेल और समर्पित पूर्वानुमान पोर्टल के माध्यम से पूर्वानुमान परिणाम साझा किए जा रहे हैं। पवन ऊर्जा पूर्वानुमान पोर्टल से आगामी ७ दिनों के लिए समग्र पूर्वानुमान के आँकड़े सर्व साधारण के द्वारा देखे जा सकते हैं।

							OF WIND EN ENEWABLE ENER MONITORINGS							Service of the servic
Total										REFRES	Н		Updated Time :	2018-02-05 14:14:
DATA SUMMARY	Reporting Capac	Reporting Capacity (MW)				Reporting Station(nos)				Reporting Capacity (%)				
Station Description	ОК	PARTIAL	NOT OK	NO DATA	TOTAL	OK	PARTIAL	NOT OK	NO DATA	TOTAL	ОК	PARTIAL	NOT OK	NO DATA
		3774	537	156	5931					115	23.0%.J	62.0% 1	10.0% 7	3.0%1
		901	129		4807					70	B5.0% J	5.0% 1	7.0% 1	1.0% 7
ISRO_SAC - TN					5931					115	100.0% J	0.0%1	0.0%1	0.0%7
					4807					70	100.00£ Ĵ	0.0% 7	0.0%1	0.0%1
NCMRWF_4km - TN			5931		5931				0	115	120.0	0.0%1	100.0% 7	0.0%7
NCMRWF_4km - GI			4807		4807					70	t#0.0	0.0%1	100.0% %	0.0%1
NCMRWF_25km - TN		0			5931					115	100.0% \$	0.0%1	0.0%1	0.0%1
NCMRWF_25km - GJ					4807					70	100.0% J	0.0%1	0.0%1	0.0% 7
			1424	204	5931			29		115	66.0% J	0.0%1	25.0% 1	7.011
			185	204	5931		0			115	1,70.00	0.0%1	1.0% 7	7.0%1
85														

चित्र 3 - मॉनिटरिंग पेज का स्क्रीनशॉट



मॉडल परीक्षण


राष्ट्रीय पवन ऊर्जा संस्थान के द्वारा मॉडल 2015 और मॉडल 2016 के प्रदर्शन का आकलन करने के लिए आंकड़ों के साथ प्रशिक्षित किया गया और जनवरी

चित्र 4 - राष्ट्रीय पवन ऊर्जा संस्थान के पवन ऊर्जा विद्युत पूर्वानुमान पोर्टल के स्क्रीनशॉट

2017 से दिसंबर 2017 तक की अवधि का मॉडल सिमुलेशन किया गया। उपर्युक्त परिक्षण के परिणाम का विवरण निम्नवत चित्र 6 में दर्शाया गया हैः उपर्युक्त के अनुसार, 80 प्रतिशत ब्लॉकों का एक दिवसीय पूर्वानुमान विचलन 600 मेगावॉट (संस्थापित क्षमता का 7.5 प्रतिशत) और 95 प्रतिशत ब्लॉकों का का एक दिवसीय पूर्वानुमान विचलन 1200 मेगावॉट के अंतर्गत है।

चित्र 5 - तमिलनाडु - एक दिवस के आगे का त्रुटि विश्लेषण

प्रकाशन

राष्ट्रीय पवन ऊर्जा संस्थान (रा.प.ऊ.सं.)

भारत सरकार के नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) का स्वायत्त अनुसंधान एवं विकास संस्थान । वेलचेरी-ताम्बरम प्रमुख मार्ग, पल्लिकरणै, चेन्नई - 600 100

दूरभाष : +91-44-2900 1162 / 1167 / 1195 फैक्स : +91-44-2246 3980 इमेल : info.niwe@nic.in वेबसाइट : http://niwe.res.in www.facebook.com/niwechennai www.twitter.com/niwe_chennai

नि:शुल्क डाऊनलोड कीजिए

पवन के सभी अंक रा.प.ऊ.सं. की वेबसाइट पर उपलब्ध हैं आप नि:शुल्क डाऊनलोड कर सकते हैं http://niwe.res.in