

Agenda

- 1. Introduction to COWI
- 2. Foundation types
- 3. Introduction to foundation design
- 4. Basis of design
- 5. Advisory foundation design

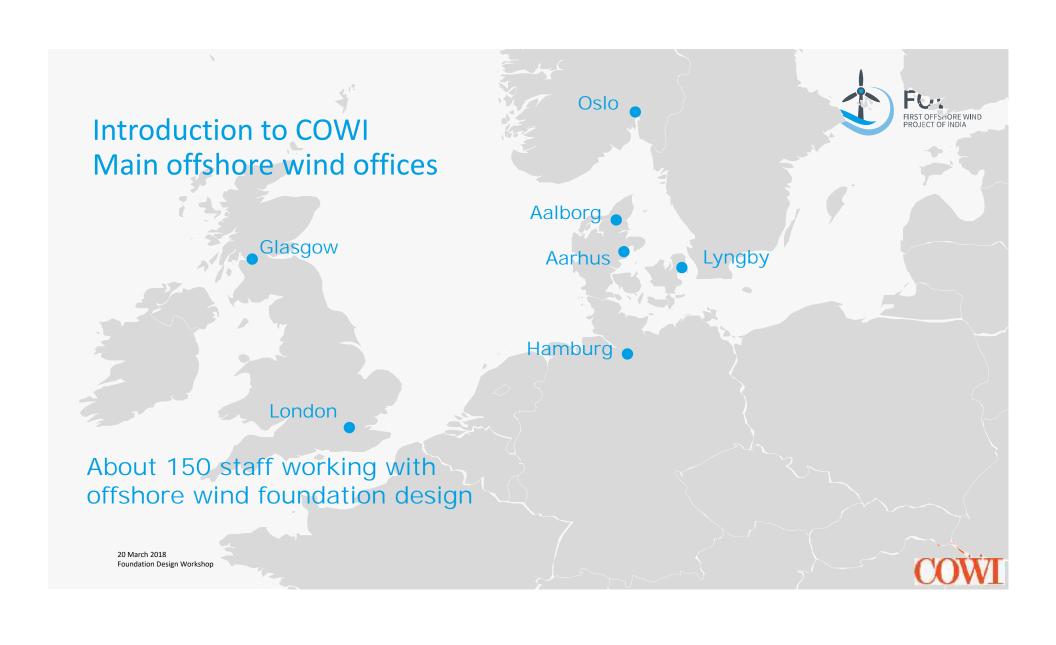
1. Introduction to COWI

Founded in 1930 by

Christen Ostenfeld

Wriborg Jønson

Introduction to COWI



Introduction to COWI Marine offices

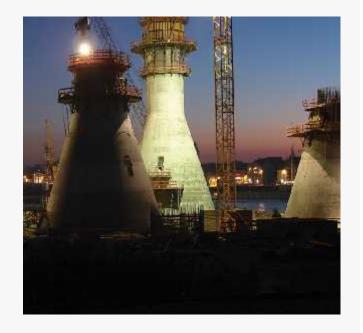
2. Foundation types

Due to its site-specific character, offshore wind foundations represent a significant part of a project's capital expenditure, and therefore optimization of its structure might lead to substantial savings.

Foundation types

Foundation types Investigated

- Steel jackets
- Concrete gravity based foundations
- Monopiles



Foundation types Concrete gravity based foundations

Pros	Cons
+ cheap construction	- heavy
+ local construction	- difficult to install
+ versatile	

Foundation types Steel jackets

Pros	Cons
+ widely used	- relatively expensive
+ relatively light	

Foundation types Monopiles

Pros	Cons
+ widely used	- relatively heavy
+ supply chain	- special equipment needed
+ fast to install	
+ relatively cheap	
+ versatile	

Foundation types Selection criteria


- Water depth
- Wind turbine MW class
- Costs
- **Ground conditions**
- Installation vessels availability
- Local fabrication facilities

Foundation types

Foundation types Selection OWF Gujarat

- Water depth -> 14 to 18 m w.r.t. LAT
- Wind turbine MW class -> 3 to 6 MW
- Costs
- Ground conditions -> Clay and sand
- Installation vessels availability
- Local fabrication facilities

Foundation types Selection OWF Gujarat

Criterion	Gravity	Jacket	Monopile
Water depth	0-40-> +	30-50 -> -	0-40 -> +
Wind turbine MW class	+	+	+
Costs	++	-	+
Ground conditions	-	+	+
Installation vessel	-	+	+
Local fabrication	+	0	О
Sum	3	1	5

Wind turbine technology

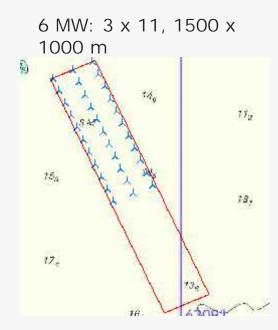
Available Turbine Models	Rated Power (MW)	IEC Class	Rotor diameter (m)
MHI Vestas V164-9.5MW	9.5	IEC S	164
MHI Vestas V112-3.3MW	3.3	IEC IB	112
Senvion 6.3 M152	6.33	IEC S	152
Siemens SWT-8.0-154	8.0	IEC IB	154
Siemens SWT-3.6-130	3.6	IEC IB	130

Wind turbine technology Risks

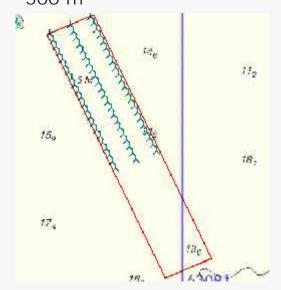
Project-Price grows with risk:

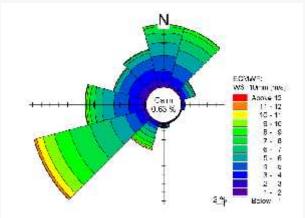
- New Models mean higher risk
- OEM's inexperienced with offshore environment mean higher risk
- Adapted onshore models mean higher risk

=> Lower Project-Risk with proven offshore wind turbines e.g. Siemens 6MW, Siemens 4MW, MHI Vestas 3 MW


Wind turbine technology Selection OWF Gujarat

Reference Turbines	Rated Power (MW)	Hub Height (m)	Rotor diameter (m)
Generic 6 MW	6	107	154
Generic 3 MW	3	86	112

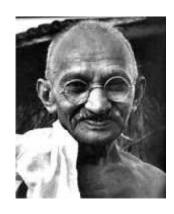




Wind turbine technology Layout OWF Gujarat

3 MW: 3 x 22, 1500 x 500 m

Layout Optimization



- Increased distance between turbines
 - => reduced wake loss and higher cable costs
- 2 lines of turbines compared to 3 lines
 - => reduced wake loss and higher cable costs.

3. Introduction to foundation design

"I do not want my house to be walled in on all sides and my windows to be stuffed. I want the culture of all lands to be blown about my house as freely as possible. But I refuse to be blown off my feet by any"

Mahatma Gandhi

Introduction to foundation design Design basis

- Codes and standards
- Foundation concept
- Design lifetime and further Employer's requirements
- Design conditions
 - Soil conditions
 - Environmental conditions:
 - water depths and water levels
 - wind, typhoons
 - waves, currents
 - earthquakes
 - temperatures etc.
- Design processes, methodologies and loads

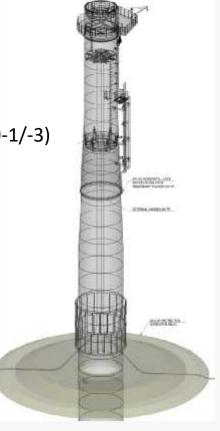
Compiled in "Design Basis" document

Introduction to foundation design Codes and standards

DNVGL family of standards:

Governing standard: DNVGL-ST-0126

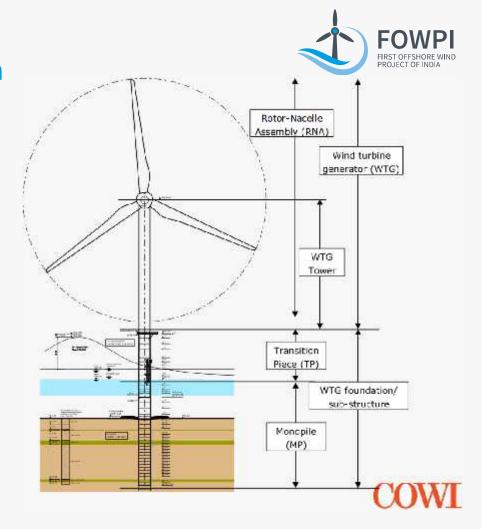
Standards for loads: DNVGL-ST-0437 (alternatively IEC 61400-1/-3)


Guidelines for steel design:

DNV-RP-C202: Buckling Strength of Shells

DNVGL-RP-C203: Fatigue design of offshore steel structures

Corrosion: DNVGL-RP-0416


Grout: DNVGL-RP-0419

Introduction to foundation design Basic components

- Wind turbine generator (WTG):
 - Rotor-Nacelle-Assembly (RNA)
 - WTG tower
- WTG foundation or sub-structure:
 - Primary structures, also referred to as **Primary Steel**: monopile (MP) and transition piece (TP)
 - Grouted connection between MP and TP
 - Secondary Steel components of the foundation, also referred to as appurtenances or Secondary Steel
 - Scour protection on the seabed

Introduction to foundation design Basic components - foundation

Structural components from design point of view:

Primary Steel:

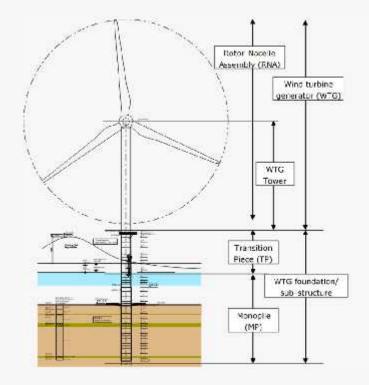
These are components which are participating in the overall integrity of the structure or which are important for operational safety. Structural parts where failure will have substantial consequences.

Secondary Steel:

These are components of no significance for the overall integrity of the structure. Structural parts where failure will be without significant consequence.

Special Steel:

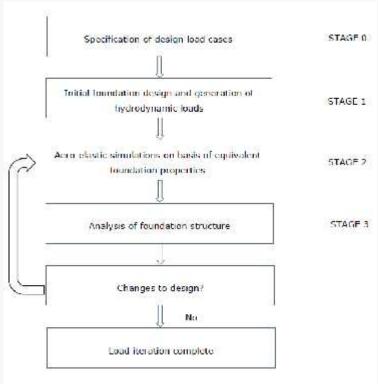
These are components which are essential to the overall integrity of the structure and exposed to particularly arduous conditions. Structural parts where failure will have substantial consequences and are subject to a complex stress condition. Special structural members are a subset of the Primary Steel.



Introduction to foundation design Design process

Dynamic system

- Wind and turbulence on the WTG
- Wave loads acting on the foundation
- Design checks:
 - ULS (50-year wind and wave)
 - FLS (over the design life time)
 - NFA (limits for WTG, to avoid resonance)
 - ALS (e.g. ship impact)
 - SLS (e.g. deformation limits)



Introduction to foundation design Design process – load iteration

Iterative process

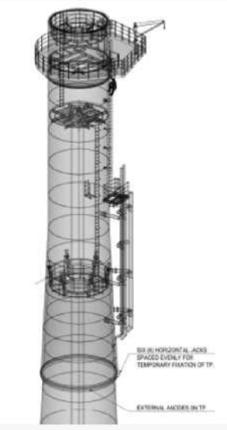
Introduction to foundation design **Appurtenances**

External:

- Access system:
 - **Boat landing**
 - External resting platforms
 - Access ladders
- External working platform / service platform

Technical:

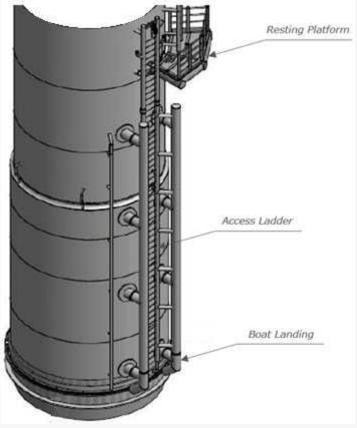
- Corrosion protection components
- Cable protection system
- Grout lines etc.



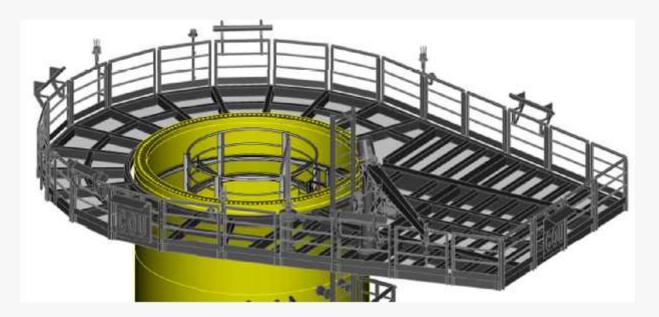
Introduction to foundation design **Appurtenances**

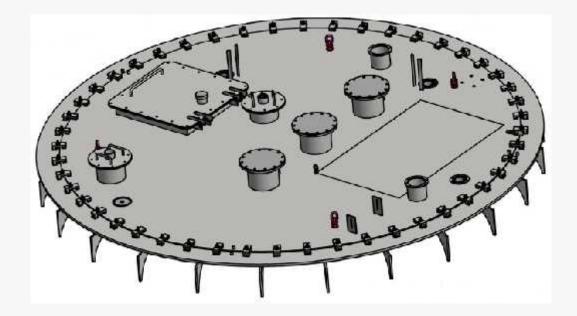
Internal:

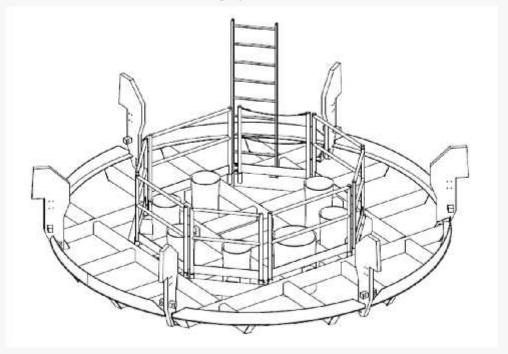
- **Bolting platform**
- Switch gear platform
- Airtight deck
- Internal working platform
- Internal ladders



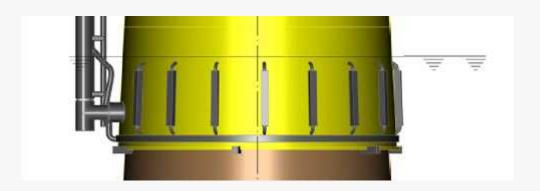
Introduction to foundation design Appurtenances – Access system


- **Boat landing**
- External resting platforms
- Access ladders


Introduction to foundation design Appurtenances – Service platform


Introduction to foundation design Appurtenances – Airtight deck

Introduction to foundation design Appurtenances – Internal working platform



Introduction to foundation design Appurtenances – Corrosion protection system

ICCP GACP

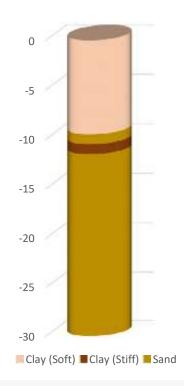
5. Basis for design

The site conditions for OWF Gujarat

Basis of Design Overview

- Codes and standards -> DNVGL family of standards and guideline
- Foundation concept -> Monopile with grouted connection
- Design lifetime
- **Design conditions**
 - Soil conditions
 - Environmental conditions:
 - water depths and water levels
 - wind, typhoons
 - waves, currents
 - earthquakes
 - temperatures etc.
- Design processes, methodologies and loads

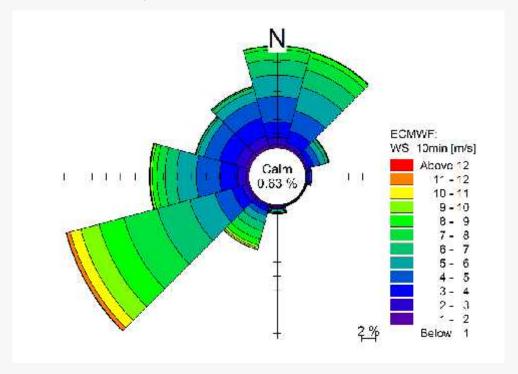
Basis of Design Design lifetime


- Operation lifetime -> 25 years
- Installation period -> 6-12 months
- Commissioning of WTG -> 6 months
- Decommisioning -> 6 months
- Design lifetime -> 27 years

Basis of Design Soil conditions

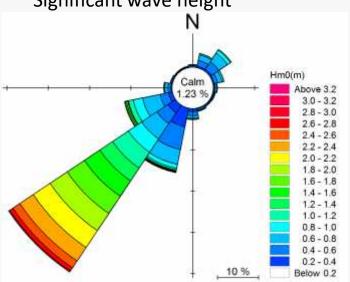
Top of layer	Soil type	Consistence	Υ'	φ	-
[m below sb]	12	29	[kN/m ^a]	I.l	[kPa]
0.00	Clay	Very soft	6		3
2.50	Clay	Very soft	6		6.2
5.00	Clay	Very soft	6		6.8
7.50	Clay	Very soft	6		7.2
9.50	Sand	Very dense	10	41	
10.50	Clay	Stiff	10.5		111
11.50	Sand	Very dense	10	35	
14.00	Sand	Very dense	10	41	
15.50	Sand	Very dense	10	37	
20.00	Sand	Very dense	10	38	
21.50	Sand	Very dense	10	37	
23.00	Sand	Very dense	10	39	
24.50	Sand	Very dense	10	36	
26.00	Sand	Very dense	10	41	
27.50	Sand	Very dense	10	37	
29.00	Sand	Very dense	10	41	

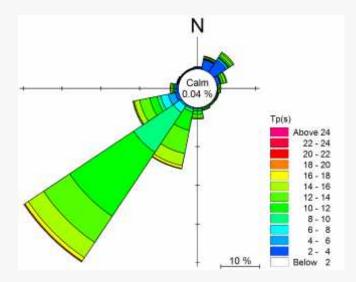
Basis of Design Environmental conditions – water depths and levels


- Water depths range between 14 an 18 m w.r.t. LAT for OWF Gujarat -> 16 m w.r.t. LAT
- Extreme values for typhoon conditions:

Return period (years)	50
Highest sea water level (m LAT)	+ 7.80
Storm surge (m)	3.26
Significant wave height Hm0 (m)	9.5
Extreme (design) wave height (m)	17.7
Extreme (design) wave crest (m)	13.8
Highest wave level (m LAT)	+ 21.60

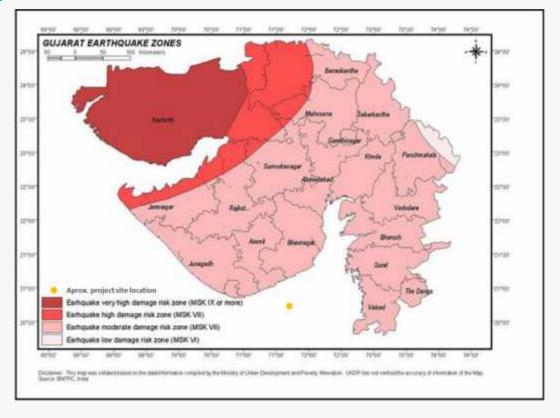
Basis of Design Wind conditions – wind speeds





Basis of Design Wave conditions – normal conditions

Significant wave height


Peak wave period

Basis of Design Earthquakes

Basis of Design Summary

Design lifetime: 27 years

Environmental conditions

Water Depth: 16m

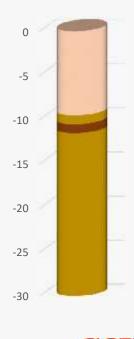
Highest sea water level: +7.80m LAT

Wind and wave loads: according to Metocean study

Maximum design wave level: +21.60m LAT

Splash zone: -1.50m to +7.00m LAT

Marine growth: according to ISO 19901-1:2005


Earthquakes: 1 time bottom diameter of MP added to pile length

Scour protection assumed

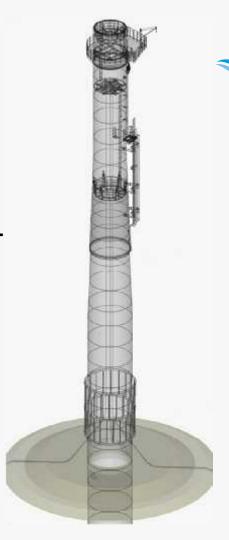
Design loads: FLS and ULS

Soil conditions

Top of layer	Soil type	Consistence	(y'	· p	(A)
[mipelowab]			[kN/m ³]	I.1	[kPc]
0.00	Clay	Very snill	6		-3
2.50	Clay	Very soft	6		6.2
5.00	Clay	Very soft	6		6.8
7.50	Clay	Very soft	0		7.2
9.50	Sand	Very dense	10	41	
10.50	Clay	Stiff	10.5		111
11.50	Sand	Very dense	10	35	
14.00	Sand	Very dense	10	41	
15.50	Sand	Very dense	10	37	
20.00	Sand	Very dense	10	38	
21,50	Sand	Very dense	10	37	
23.00	Sand	Very dense	10	39	
24.50	Sand	Very dense	10	36	
26.00	Sand	Very dense	10	41	
27.50	Sand	Very dense	10	37	
29:00	Send	Very dense	10	41	

5. Advisory **Foundation Design**

Advisory Foundation Design Concept Design


- Monopile foundation recommended for the site
 - Most common foundation type in offshore wind farms
 - Suitable for a wide variety of soil conditions
 - **Rapid fabrication and installation**
 - **Lower costs** compared to other foundation types
- Challenges are
 - Heavy lift crane for installation
 - **Hydraulic hammer** for installation
 - **Fabrication facilities** for huge piles and TPs

Advisory Foundation Design Main Features

- Conical grouted connection between MP and TP
- Interface level between TP and Tower at +24m LAT
- Top of MP at +6 m LAT
- Bottom of TP at -4m LAT

Advisory Foundation Design Results

- ULS and FLS design checks fulfilled.
- NFA:

Turbine Model	[-]	3 MW	6 MW
Frequency (ULS model/LB)	[Hz]	0.294	0.245
Frequency (FLS model/BE)	[Hz]	0.295	0.247
Frequency (Upper Bound/UB)	[Hz]	0.298	0.248

Advisory Foundation Design Dimensions

Turbine model	[Unit]	3 MW	6 MW
Mass of TP	[MT]	191	306
Length of TP	[m]	28	28
Top diameter of TP	[m]	4.5	6.0
Bottom diameter of TP	[m]	5.5	7.0
Wall thickness of TP	[mm]	55-65	60-90
Mass of MP	[MT]	530	870
Length of MP	[m]	58	63
Embedment length of MP	[m]	36	41
Top diameter of MP	[m]	4.4	5.9
Bottom diameter of MP	[m]	5.5	7.0
Wall thickness of MP	[mm]	55-80	60-100
Length of cylindrical section of MP	[m]	42	47
Length of conical section of MP	[m]	16	16

Thank you very much for your attention! Any questions?

